首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Livestock populations in protected areas are viewed negatively because of their interaction with native ungulates through direct competition for food resources. However, livestock and native prey can also interact indirectly through their shared predator. Indirect interactions between two prey species occur when one prey modifies either the functional or numerical responses of a shared predator. This interaction is often manifested as negative effects (apparent competition) on one or both prey species through increased predation risk. But indirect interactions can also yield positive effects on a focal prey if the shared predator modifies its functional response toward increased consumption of an abundant and higher-quality alternative prey. Such a phenomenon between two prey species is underappreciated and overlooked in nature. Positive indirect effects can be expected to occur in livestock-dominated wildlife reserves containing large carnivores. We searched for such positive effects in Acacia-Zizhypus forests of India's Gir sanctuary where livestock (Bubalus bubalis and Bos indicus) and a coexisting native prey (chital deer, Axis axis) are consumed by Asiatic lions (Panthera leo persica). Chital vigilance was higher in areas with low livestock density than in areas with high livestock density. This positive indirect effect occurred because lion predation rates on livestock were twice as great where livestock were abundant than where livestock density was low. Positive indirect interactions mediated by shared predators may be more common than generally thought with rather major consequences for ecological understanding and conservation. We encourage further studies to understand outcomes of indirect interactions on long-term predator-prey dynamics in livestock-dominated protected areas.  相似文献   

2.
The relative influence of habitat loss vs. habitat fragmentation per se (the breaking apart of habitat) on species distribution and abundance is a topic of debate. Although some theoretical studies predict a strong negative effect of fragmentation, consensus from empirical studies is that habitat fragmentation has weak effects compared with habitat loss and that these effects are as likely to be positive as negative. However, few empirical investigations of this issue have been conducted on tropical or wide-ranging species that may be strongly influenced by changes in patch size and edge that occur with increasing fragmentation. We tested the relative influence of habitat loss and fragmentation by examining occupancy of forest patches by 20 mid- and large-sized Neotropical mammal species in a fragmented landscape of northern Guatemala. We related patch occupancy of mammals to measures of habitat loss and fragmentation and compared the influence of these two factors while controlling for patch-level variables. Species responded strongly to both fragmentation and loss, and response to fragmentation generally was negative. Our findings support previous assumptions that conservation of large mammals in the tropics will require conservation strategies that go beyond prevention of habitat loss to also consider forest cohesion or other aspects of landscape configuration.  相似文献   

3.
Bonin MC  Almany GR  Jones GP 《Ecology》2011,92(7):1503-1512
Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.  相似文献   

4.
Abstract: Road construction may result in significant loss of biodiversity at both local and regional scales due to restricted movement between populations, increased mortality, habitat fragmentation and edge effects, invasion by exotic species, or increased human access to wildlife habitats, all of which are expected to increase local extinction rates or decrease local recolonization rates. Species loss is unlikely to occur immediately, however. Rather, populations of susceptible species are expected to decline gradually after road construction, with local extinction occurring sometime later. We document lags in wetland biodiversity loss in response to road construction by fitting regression models that express species richness of different taxa ( birds, mammals, plants, and herptiles) as a function of both current and historical road densities on adjacent lands. The proportion of variation in herptile and bird richness explained by road densities increased significantly when past densities were substituted for more current densities in multiple regression models. Moreover, for vascular plants, birds, and herptiles, there were significant negative effects of historical road densities when the most current densities were controlled statistically. Our results provide evidence that the full effects of road construction on wetland biodiversity may be undetectable in some taxa for decades. Such lags in response to changes in anthropogenic stress have important implications for land-use planning and environmental impact assessment.  相似文献   

5.
Successful control of tsetse (Glossina spp.)-transmitted trypanosomiasis in the Ghibe Valley, Ethiopia, appears to have accelerated conversion of wooded grassland into cropland. Land conversion, in turn, may have fragmented wildlife habitat. Our objective was to assess the influence of the expansion of agricultural land-use, brought about by tsetse control, on ecological properties by using bird species richness and composition as indicators of environmental impacts. We sampled bird species richness and composition (using Timed-Species counts) and habitat structure (using field sampling and remote sensing) in four land cover/land-use types in areas subjected to tsetse fly control and adjacent areas without control. At the height of the growing season bird species numbers and vegetative complexity were greater in the small-holder, oxen-plowed fields and riparian woodlands than in wooded grasslands or in large-holder, tractor-plowed fields. Species composition was highly dissimilar (40–70% dissimilarity) comparing among land-use types, with many species found only in a single type. This implies that trypanosomiasis control that results in land conversion from wooded grasslands to small-holder farming in this region may have no adverse impacts on bird species numbers but will alter composition. These results also suggest that moderate land-use by humans (e.g., small-holder field mosaics) increases habitat heterogeneity and bird species richness relative to high levels of use (e.g., tractor-plowed fields). Tsetse control may be indirectly maintaining species richness in the valley by encouraging the differential spread of these small-scale, heterogeneous farms in place of large-scale, homogeneous farms. Nevertheless, if the extent of small-holder farms significantly exceeds that of present levels, negative impacts on bird species richness and large shifts in species composition may occur.  相似文献   

6.
Abstract: Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.  相似文献   

7.
Decision making can be facilitated by observing other individuals faced with the same or similar problem, and recent research suggests that this social information use is a widespread phenomenon. Implications of this are diverse and profound: for example, social information use may trigger cultural evolution, affect distribution and dispersal of populations, and involve intriguing cognitive traits. We emphasize here that social information use is a process consisting of the scenes of (1) event, (2) observation, (3) decision, and (4) consequence, where the initial event is a scene in such a process of another individual. This helps to construct a sound conceptual framework for measuring and studying social information use. Importantly, the potential value of social information is affected by the distance in time, space, and ecology between the initial observation and eventual consequence of a decision. Because negative interactions between individuals (such as direct and apparent competition) also depend on the distance between individuals along these dimensions, the potential value of information and the negative interactions may form a trade-off situation. Optimal solutions to this trade-off can result in adaptively extended social information use, where using information gathered some time ago, some distance away, and from ecologically different individuals is preferred. Conceivably, using information gathered from a heterospecific individual might often be optimal. Many recent studies demonstrate that social information use does occur between species, and the first review of published cases is provided here. Such interaction between species, especially in habitat selection, has important consequences for community ecology and conservation. Adaptively extended social information use may also be an important evolutionary force in guild formation. Complex coevolutionary patterns may result depending on the effect of information use on the provider of information.  相似文献   

8.
Ontogenetic habitat shifts have been documented in numerous fish and amphibians and in some reptiles. Intraspecific competition together with differential predation, prey size, social interactions, size-related thermal requirements, and morphological constraints on movement are often implicated in this ontogenetic habitat separation. In the current study, we combined field observation with experiments in seminatural arenas to test various hypotheses regarding the ontogenetic habitat shift that we have documented in the common chameleon. Juveniles (mean, 1 g) occupied low grasses and the adults (mean, 35 g) were found on bushes and trees. Overlap in habitat use between these two age classes was minimal. Our field experiments showed that juveniles actively avoid the presence of adults by concealment or flight. Adults readily attacked and consumed juveniles, regardless of their own mass. These results suggest that the risk of cannibalism towards juveniles is an important selective force behind the ontogenetic habitat shift observed in the common chameleon and may be important in other species too.  相似文献   

9.
张忠华  胡刚 《生态环境》2011,(8):1209-1213
采用2×2列联表的χ2检验和Spearman秩相关系数分析了喀斯特山地青冈栎(Cyclobalanopsis glauca)群落22个优势种的种间联结性和相关性。结果表明,在所组成的231个种对中,χ2检验中有100个种对为正联结,110个种对为负联结;Spearman秩相关系数检验有114个种对为正相关,117个种对为负相关,正、负联结或相关的种对数相近。正联结或正相关的种对主要体现了种间对生境具有相似的生态适应性和生物学特性,而负联结或负相关关系则主要由于对生境的不同偏好或相异的生物学特性所致。喀斯特山地高度的生境异质性促使优势种间的生态位相互分化,对生境的偏好趋异,负联结或负相关的种对趋于增加,因而喀斯特山地高度的生境异质性对植物种间关系的形成具有重要的影响。研究结果对于指导喀斯特地区进行人工植被恢复和重建具有一定的实践指导意义。  相似文献   

10.
Previous work on tropical sponge assemblages has provided strong evidence that sponges coexist on coral reefs through a diversity of positive and negative associations; however, the majority of this work has focused on Caribbean coral reefs. Here, we investigate the intra-phyletic spatial associations between the 20 most abundant sponge species at two sites experiencing different environmental regimes in the Wakatobi National Marine Park, Indonesia. We used a Monte Carlo simulation approach to compare the number of spatial associations between each species pair to that expected if species distribution patterns were non-associative (i.e. random). We found that sponges were predominately randomly distributed at the high coral cover site, whereas most sponges were negatively associated with other sponges at the sedimented, low coral cover site. We also found differences between distribution patterns for specific species at the two sites; a number of species that showed a random distribution pattern at the high coral cover site had negative association patterns at the low coral cover site. Our research supports recent ecological studies suggesting that interactions between species are unlikely to be homogenously distributed, as we found that some sponge species interactions differed depending on the environmental regimes in which they were found; this suggests that species interactions may be spatially variable. Finally, our results contrast with studies from elsewhere, as the sponge assemblages at these two sites in the Wakatobi appear to be dominated by negative associations and random distribution patterns rather than widespread competition.  相似文献   

11.
Assessing Risks to Biodiversity from Future Landscape Change   总被引:11,自引:0,他引:11  
We examined the impacts of possible future land development patterns on the biodiversity of a landscape. Our landscape data included a remote sensing derived map of the current habitat of the study area and six maps of future habitat distributions resulting from different land development scenarios. Our species data included lists of all bird, mammal, reptile, and amphibian species in the study area, their habitat associations, and area requirements for each. We estimated the area requirements using home ranges, sampled population densities, or genetic area requirements that incorporate dispersal distances. Our measures of biodiversity were species richness and habitat abundance. We calculated habitat abundance in two ways. First, we computed the total habitat area for each species in each landscape. Second, we calculated the number of habitat units for each species in each landscape by dividing the size of each habitat patch in the landscape by the area requirement and summing over all patches. Species richness was based on presence of habitat. Species became extinct in the landscape if they had no habitat area or no habitat units, respectively. We then computed ratios of habitat abundance in each future landscape to habitat abundance in the present for each species. We also computed the ratio of future to present species richness. We then calculated summary statistics across all species. Species richness changed little from present to future. There were distinctly greater risks to habitat abundance in landscapes that extrapolated from present trends or zoning patterns, however, as opposed to landscapes in which land development activities followed more constrained patterns. These results were stable when tested using Monte Carlo simulations and sensitivity tests on the area requirements. We conclude that this methodology can begin to discriminate the effects of potential changes in land development on vertebrate biodiversity.  相似文献   

12.
As the number of biological invasions increases, the potential for invader-invader interactions also rises. The effect of multiple invaders can be superadditive (invasional meltdown), additive, or subadditive (invasional interference); which of these situations occurs has critical implications for prioritization of management efforts. Carduus nutans and C. acanthoides, two congeneric invasive weeds, have a striking, segregated distribution in central Pennsylvania, U.S.A. Possible hypotheses for this pattern include invasion history and chance, direct competition, or negative interactions mediated by other species, such as shared pollinators. To explore the role of resource competition in generating this pattern, we conducted three related experiments using a response-surface design throughout the life cycles of two cohorts. Although these species have similar niche requirements, we found no differential response to competition between conspecifics vs. congeners. The response to combined density was relatively weak for both species. While direct competitive interactions do not explain the segregated distributional patterns of these two species, we predict that invasions of either species singly, or both species together, would have similar impacts. When prioritizing which areas to target to prevent the spread of one of the species, it is better to focus on areas as yet unaffected by its congener; where the congener is already present, invasional interference makes it unlikely that the net effect will change.  相似文献   

13.
Six cerithiid snail species occur on rocky intertidal flats along the Sinai coasts of the Red Sea: Clypeomorus moniliferum, Cerithium caeruleum, C. scabridum, C. columna, Clypeomorus tuberculatum and Cerithium echinatum. The present study, conducted at 22 stations covering almost the whole length of Sinai, covered the 4 yr period from October 1972 to August 1976, and describes the habitat occupancy of 5 of these species (C. echinatum is excluded for lack of data). Several of these species (sometimes all) often occur together, and in such cases are distincly segregated by habitat. However all species considerably overlap in their distribution along the axes of four major interrelated abiotic gradients, thus excluding the possibility that habitat segregation is determined by larval settlement preferences. Other distributional patterns observed at some sites, such as lack of overlap or contact between belts of the various species and the relative abundance of food available to all species, make postlarval competitive interactions unlikely. The existence and the degree of proximity of a coral reef with its associated predatory fishes, influence the cerithiids' distributional patterns. Differences between the cerithiid species in their vulnerability to fish predation, associated with differences between sites in the abundance and the accessibility of predatory fishes, and in the availability of refuges for each cerithiid species, can satisfactorily explain the observed distributional patterns including co-occurrence with habitat segregation. It is proposed that habitat segregation is caused by predation on young stages by generalist fishes which may totally eliminate a certain species at a given site; the same site may provide refuges for recruits of another species, allowing these to survive to an advanced age. In general, the flat's structural complexity is associated with its diversity of refuges from predation, and hence with the number of co-existing species. This mechanism for co-existence and habitat segregation in tropical Cerithiidae may also be instrumental in maintaining the high species diversity of other tropical benthic communities.Paper No. 12 in the series Colonization of the Eastern Mediterrancan by Red Sea species immigrating through the Suez Canal  相似文献   

14.
In a seagrass restoration project, we explored the potential for enhancing the restoration process by excluding antagonistic engineering interactions (i.e., biomechanical warfare) between two ecosystem engineers: the bioturbating lugworm Arenicola marina and the sediment-stabilizing seagrass Zostera noltii Hornem. Applying a shell layer underneath half of our seagrass transplants successfully reduced adult lugworm density by over 80% and reduced lugworm-induced microtopography (a proxy for lugworm disturbance) at the wave-sheltered site. At the wave-exposed site adult lugworm densities and microtopography were already lower than at the sheltered site but were further reduced in the shell-treated units. Excluding lugworms and their bioengineering effects corresponded well with a strongly enhanced seagrass growth at the wave-sheltered site, which was absent at the exposed site. Enhanced seagrass growth in the present study was fully assigned to the removal of lugworms' negative engineering effects and not to any (indirect) evolving effects such as an altered biogeochemistry or sediment-stabilizing effects by the shell layer. The context-dependency implies that seagrass establishment at the exposed site is not constrained by negative ecosystem-engineering interactions only, but also by overriding physical stresses causing poor growth conditions. Present findings underline that, in addition to recent emphasis on considering positive (facilitating) interactions in ecological theory and practice, it is equally important to consider negative engineering interactions between ecosystem-engineering species. Removal of such negative interactions between ecosystem-engineering species can give a head start to the target species at the initial establishment phase, when positive engineering feedbacks by the target species on itself are still lacking. Though our study was carried out in a marine environment with variable levels of wave disturbance, similar principles may be expected to apply to other ecosystems that are inhabited by ecosystem engineers.  相似文献   

15.
Feeley KJ  Terborgh JW 《Ecology》2006,87(1):144-150
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.  相似文献   

16.
Abstract:  Quantitative conservation objectives require detailed consideration of the habitat requirements of target species. Tree-living bryophytes, lichens, and fungi are a critical and declining biodiversity component of boreal forests. To understand their requirements, Bayesian methods were used to analyze the relationships between the occurrence of individual species and habitat factors at the tree and the stand scale in a naturally fragmented boreal forest landscape. The importance of unexplained between-stand variation in occurrence of species was estimated, and the ability of derived models to predict species' occurrence was tested. The occurrence of species was affected by quality of individual trees. Furthermore, the relationships between occurrence of species at the tree level and size and shape of stands indicated edge effects, implying that some species were restricted to interior habitats of large, regular stands. Yet for the habitat factors studied, requirements of many species appeared similar. Species occurrence also varied between stands; most of the seemingly suitable trees in some stands were unoccupied. The models captured most variation in species occurrence at tree level. They also successfully accounted for between-stand variation in species occurrence, thus providing realistic simulations of stand-level occupancy of species. Important unexplained between-stand variation in species occurrence warns against a simplified view that only local habitat factors influence species' occurrence. Apparently, similar stands will host populations of different sizes due to historical, spatial, and stochastic factors. Thus, habitat suitability cannot be assessed simply by population sizes, and stands lacking a species may still provide suitable habitat and merit protection.  相似文献   

17.
Dispersal Can Limit Local Plant Distribution   总被引:21,自引:0,他引:21  
The ability of species to establish new populations at unoccupied sites is a critical feature in the maintenance of biological diversity, and it has taken on new importance as a result of global climate change and expected changes in species distribution. To examine the dispersal potential of plant species, seeds of four annual plant species were experimentally dispersed 40 to 600 m from existing populations in Massachusetts (U.S.A.) to 34 nearby unoccupied but apparently suitable sites. At three of these sites new populations were established that persisted for four generations and expanded slowly in area. At seven sites, a small initial population eventually died out. At the 24 other sites, new populations did not become established, indicating that the sites were in some way unsuitable, that not enough seeds arrived, or that conditions suitable for seed germination do not occur every year. These results suggest that some species may be unable to disperse naturally out of their existing ranges in response to global climate change, particularly if habitat fragmentation creates barriers to dispersal. These species may have to be assisted to reach suitable sites nearby to prevent their extinction in the wild.  相似文献   

18.
Habitat loss and degradation are primary threats to amphibians and reptiles, but the relative effects of common land uses on assemblages and the mechanisms that underlie faunal responses are poorly studied. We reviewed the effects of four prevalent types of habitat alteration (urbanization, agriculture, livestock grazing, and silviculture) on amphibian and reptile species richness and abundance by summarizing reported responses in the literature and by estimating effect sizes across studies for species richness in each land‐use type. We then used a multinomial model to classify species as natural habitat specialists, generalists, and disturbed habitat specialists and examined variation in effect sizes for each land‐use type according to habitat specialization categories. There were mixed conclusions from individual studies, some reporting negative, neutral, or positive effects of land use on species richness and total abundance. A large proportion of studies reported species‐specific effects of individual species abundance. However, in our analysis of effect sizes, we found a general trend of negative effects of land use on species richness. We also demonstrate that habitat associations of common species and species turnover can explain variation in the effect of land use on herpetofauna. Our review highlights the pervasive negative effects of common land uses on amphibians and reptiles, the importance of identifying groups vulnerable to land‐use change (e.g., forest‐associated species) in conservation studies, and the potential influence of disturbance‐associated species on whole assemblage analyses.  相似文献   

19.
The negative consequences of habitat fragmentation for plant communities have been documented in many regions of the world. In some fragmented habitats, livestock grazing has been proposed to be a dispersal mechanism reducing isolation between fragments. In others, grazing acts together with fragmentation in a way that increases habitat degradation. Iberian gypsum plant communities have been grazed and fragmented by agricultural practices for centuries. Although their conservation is considered a priority by the European Community, the effects of fragmentation on gypsum plant communities and the possible role of livestock grazing remain unknown. In addition, a substantial proportion of plant species growing in gypsum environments are gypsum specialists. They could be particularly affected by fragmentation, as was found for other habitat specialists (i.e., serpentine and calcareous specialists). In this study (1) we investigated the effect of fragmentation and grazing on gypsum plant community composition (species and life-forms), and (2) we tested to see if gypsum specialists were differently affected by fragmentation and grazing than habitat generalists. A vegetation survey was conducted in the largest gypsum outcrop of Europe (Middle Ebro Valley, northeast Spain). Fragmented and continuous sites in grazed and ungrazed areas were compared. Measurements related to species and composition of life-forms were contrasted first for the whole gypsum plant community and then specifically for the gypsum specialists. In the whole community, our results showed lower plant species diversity in fragmented sites, mainly due to the larger dominance of species more tolerant to fragmented habitat conditions. With livestock grazing, the plant species richness and the similarity in plant species composition between remnants was larger, suggesting that animals were acting as dispersal agents between fragments. As expected, gypsum specialists were less abundant in fragmented areas, and grazing led to the disappearance of the rare gypsum specialist Campanula fastigiata. According to our results, conservation strategies for gypsum plant communities in human-dominated landscapes should consider that fragmentation and grazing modify plant community composition affecting gypsum specialists in particular.  相似文献   

20.
Anthropogenic land-use change causes substantial changes in local and global biodiversity. Rare and common species can differ in sensitivity to land-use change; rare species are expected to be affected more negatively. Rarity may be defined in terms of geographic range size, population density, or breadth of habitat requirements. How these 3 forms of rarity interact in determining global responses to land use is yet to be assessed. Using global data representing 912 vertebrate species, we tested for differences in responses to land use of species characterized by different types of rarity. Land-use responses were fitted using generalized linear mixed-effects models, allowing responses to vary among groups of species with different forms of rarity. Species considered rare with respect to all 3 forms of rarity showed particularly strong declines in disturbed land uses (>40% of species and 30% of individuals in the most disturbed land uses). In contrast, species common both geographically and numerically and with broad habitat requirements showed strong increases (up to 90% increase in species and 40% in abundance in some land uses). Our results suggest that efforts to understand the vulnerability of species to environmental changes should account for different types of rarity where possible. Our results also have potentially important implications for ecosystem functioning, given that rare species may play unique roles within ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号