首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We assessed the ontogenetic changes in protein content and free amino acids (FAA) in eggs and early larvae of Engraulis ringens (anchoveta) off central Chile on different dates during the spawning season. On all sampling dates, a reduction in embryonic yolk-sac volume, proteins and FAA concentrations occurred during development. Protein electrophoresis (SDS–PAGE) of eggs and larvae showed at least 22 protein bands: 11 were consumed early and not detected after hatching. The proportion of essential FAA (EFAA) was higher than the proportion of non-essential FAA (NEFAA) in early eggs and in 7 day-old larvae (82.5-73% EFAA respectively). During egg development, the FAA pool was dominated by leucine, alanine and lysine, three amino acids contributing 35–44% of the total FAA in eggs. During larval development, histidine was the most abundant FAA. In July, total FAA constituted 13–18% of the egg dry weight. A similar proportion (45–51%) occurred in July between protein plus FAA and total lipids. The differences in egg size during the spawning season along with variability in batch composition suggests that the female spawning condition is a major factor determining egg quality and early offspring success.  相似文献   

2.
The content of free amino acids (FAA) in the cod (Gadus morhua L.) egg is about 200 nmol at spawning, decreasing by about 100 nmol/egg during the egg stage and about 75 nmol/larva during the yolksac larval stage. Together, alanine, leucine, serine, isoleucine, lysine, and valine account for about 75% of the decrease. Ammonium accumulates gradually during the egg stage and is quickly excreted after hatching. The body protein content is maintained during the egg and yolksac larval stages. The measured oxygen uptake of the cod embryo during the egg and yolksac larval stages accounts for about 85% of the oxygen necessary to catabolize the FAA disappearing during this period. Ammonia excretion of the cod embryo, as taken from literature data, is similar to the expected ammonia production from catabolism of the FAA. Our data suggest that FAA are a major substrate for aerobic energy production in cod eggs and yolksac larvae. The implication of this finding for the production of a favourable first-feed for cod and other cultivated marine fish larvae, and for the selection of high quality eggs of marine fishes, is stressed.  相似文献   

3.
Eggs and larvae of the Senegal sole, Solea senegalensis Kaup, were reared from fertilization until the end of metamorphosis, which occurs by Day 17 after hatching at 19.5 °C. Changes in energy content and biomass quality were studied in terms of dry weight and of carbon, nitrogen and energy content. S. senegalensis spawned eggs of about 1 mm diameter which hatched 38 h after fertilization. Average dry weight of individual eggs was 46 μg, the chorion accounting for about 18% of total dry weight. Gross energy of recently fertilized sole eggs was approximately 1 J egg−1. From fertilization to hatching, eggs lost 8% of their total energy (chorion not included). After hatching, larvae lost 14% of their initial energy until the start of feeding which occurred about 48 h afterwards. The principal components catabolized during embryogenesis were carbon-rich compounds that decreased by 26%, while nitrogen-rich compounds decreased by only 10% and were practically unaltered from hatching to the start of feeding. Feeding larvae displayed constant growth during the period studied (specific growth rate on a dry weight basis was 0.26 d−1). The relative proportion of carbon and nitrogen content revealed an accumulation of high energy compounds in the days before metamorphosis. By Day 14, the energy content reached values similar to those of recently hatched embryos, but decreased again during metamorphosis. Received: 10 June 1998 / Accepted: 28 January 1999  相似文献   

4.
The contents of free amino acids (FAA) and total protein, together with growth and gut-content, of turbot (Scophthalmus maximus L.) larvae reared at 14, 18 and 22 °C were studied from first-feeding to approximately 140 effective day-degrees post hatch (Deff ). Artemia franciscana nauplii and two species of rotifers were used as prey. Protein content accounted for about 42 and 26% of dry body mass in the A. franciscana nauplii and the rotifers, respectively. The FAA pool constituted 5.6 and 4.8% of the total amino acids in the same animals. The dry body mass of turbot larvae was exponentially related to Deff . Protein and FAA contents were linearly related to dry body mass, and were independent of rearing temperature between 14 and 18 °C. At the end of the experiment, however, turbot larvae at 22 °C had lower gut content values, retarded growth rates, and decreased FAA contents and concentrations. Thus, at this high temperature, turbot larvae seem unable to catch and ingest sufficient prey, or to sustain an amino acid assimilation rate from the intestine sufficient to meet metabolic demands. Received: 2 January 1997 / Accepted: 25 September 1998  相似文献   

5.
Rates of oxygen consumption were measured for embryos, larvae and juveniles of the seastar Mediaster aequalis for 76 days post-fertilization. The rate increased from 0.65 nmol O2 ind–1 h–1 at 6 h after fertilization to 2.8 nmol O2 ind–1 h–1 at day 35. Larvae became competent to metamorphose around day 35 post-fertilization and began to decrease their metabolic rate after this time. Metamorphosed juveniles consumed 0.74 nmol O2 ind–1 h–1. Eggs contained 138.6 µg lipid ind–1 and 12.1 µg protein ind–1. Lipid levels decreased in concentration throughout development while protein levels increased slightly. The lipid levels decreased by 88.5 µg from eggs to day 76 larvae, accounting for 3.5 J of energy. Total oxygen consumption to this point was 3.74 µmol O2 ind–1, accounting for 1.84 J. The energetic demand up to day 76 was met completely through the use of lipid reserves. Metamorphosed juveniles expended 0.5 J more than larvae at the same age. Tubes of the polychaete Phyllochaetopterus prolifica were able to induce metamorphosis in M. aequalis larvae and a non-polar extract of these tubes also triggered metamorphosis. Larvae that are delayed to metamorphose can sustain their metabolic rate with lipid reserves for a limited, yet undetermined, period.Communicated by P.W. Sammarco, Chauvin  相似文献   

6.
The pelagic yellowtail kingfish Seriola lalandi has become a target species for aquaculture in Asia and Australasia. Australasian production is reliant on larviculture from eggs of captive brood stock; however, knowledge regarding the nutritional requirements of larvae of this species is still scarce, particularly in relation to lipids. As a first step in establishing these requirements, eggs and larvae from captive S. lalandi brood stock were examined for differences in total protein, total lipid and lipid classes between individual spawning events, over the spawning season, and during larval development from fertilisation to 15 days post hatch. Results indicate that total protein egg−1 varied significantly between individual spawning events within a season, but neither total lipid nor total protein egg−1 varied significantly across the spawning season. Brood stock egg lipids were made up of approximately 60% phospholipid, 25% wax and/or sterol esters (WE), 15% triacylglycerol (TAG), and small amounts of sterols and free fatty acids. During the early larval period, both WE and TAG were utilised concurrently for energy. The larvae experienced very high mortality around 5–7 days post hatch, which coincided with very low levels of all neutral lipid classes. Although many other factors may also influence larval mortality, these results indicate that lipid provisioning may be an important factor in larval survival during the critical period around first-feeding in this species. Examination of ratios of TAG:ST, often used as a condition index in fish larvae, suggested that some of the larvae were suffering from starvation. However, as egg-derived WE appears to provide a significant source of energy during the early larval period in S. lalandi, it is suggested that WE should be included in any index of larval nutritional state.  相似文献   

7.
The present paper studied the influence of different food regimes on the free amino acid (FAA) pool, the rate of protein turnover, the flux of amino acids, and their relation to growth of larval turbot (Scophthalmus maximus L.) from first feeding until metamorphosis. The amino acid profile of protein was stable during the larval period although some small, but significant, differences were found. Turbot larvae had proteins which were rich in leucine and aspartate, and poor in glutamate, suggesting a high leucine requirement. The profile of the FAA pool was highly variable and quite different from the amino acid profile in protein. The proportion of essential FAA decreased with development. High contents of free tyrosine and phenylalanine were found on Day 3, while free taurine was present at high levels throughout the experimental period. Larval growth rates were positively correlated with taurine levels, suggesting a dietary dependency for taurine and/or sulphur amino acids. Reduced growth rates in Artemia-fed larvae were associated with lower levels of free methionine, indicating that this diet is deficient in methionine for turbot larvae. Leucine might also be limiting turbot growth as the different diet organisms had lower levels of this amino acid in the free pool than was found in the larval protein. A previously presented model was used to describe the flux of amino acids in growing turbot larvae. The FAA pool was found to be small and variable. It was estimated that the daily dietary amino acid intake might be up to ten times the larval FAA pool. In addition, protein synthesis and protein degradation might daily remove and return, respectively, the equivalent of up to 20 and 10 times the size of the FAA pool. In an early phase (Day 11) high growth rates were associated with a relatively low protein turnover, while at a later stage (Day 17), a much higher turnover was observed. Received: 19 March 1997 / Accepted: 14 April 1997  相似文献   

8.
A study was undertaken to establish the role of free amino acids (FAA) in aerobic energy dissipation in embryos of turbot (Scophthalmus maximus) which contain an oil globule in the egg. Laboratory-reared developing eggs and larvae (15°C, 34 salinity) were measured for oxygen uptake, ammonia excretion, contents of FAA, protein, and ammonium, and volumes of yolksac and oil globule. Newly spawned eggs from different batches contained 55 to 90 nmol egg–1 of FAA. Resorption of FAA occurred in parallel with the consumption of yolk. Resorption of the oil globule, however, occurred predominantly after hatching and mainly after yolk resorption. The combined data suggest that approximately 70% of the FAA are utilized as an energy substrate, while the rest are polymerized into body proteins. FAA become a significant energy substrate in the early egg stage and account for 100% of the aerobic energy dissipation 2 d after Fertilization then decrease to ca. 60% at the time of hatching. Lipids derived from the oil globule seem to be the main fuel after hatching and account for ca. 90% of the energy dissipation at the onset of first-feeding. Thus, the energetics of fish embryos which contain an oil globule seems to be different from those that depend exclusively on the nutritional reserves of the yolk.  相似文献   

9.
Naturally spawned and fertilized eggs of Atlantic halibut,Hippoglossus hippoglossus L., were analysed for protein, free amino acids (FAA), ammonium ions and energy content. The chemical composition was found to be size-dependent but varied little during egg development. Ammonium ions did, however, accumulate during the late embryonic stage, and the trend in FAA content was downward during the same period. Rates of O2 uptake and NH3 excretion followed exponential patterns. A total of 1µmol O2 was consumed and 120 nmol NH3 excreted between the time intervals of fertilization and 1 d post hatch. Derived O:N ratios indicated that the dominant portion of the energy metabolism was lipid- or carbohydrate-based during the mid-development period but switched to FAA as hatch was approached.Correspondence should be addressed to: Zoological Laboratory, University of Bergen, Allégt. 41, N-5007 Bergen, Norway  相似文献   

10.
 In the Black Sea, during summer stratification, Calanus euxinus (Hulsemann) undertakes diel vertical migrations with an amplitude of about 117 m from oxygenated, warm (18 °C) surface layers to hypoxic (∼0.8 mg O2 l−1) zones with lower temperature (7.9 °C). When such changes in temperature and oxygen concentration are reproduced in the laboratory, total metabolism, basal metabolism and scope of activity of copepods decrease 7.2, 7.8 and 6.7 times, respectively, while the frequency of locomotory acts and mechanical power decline 3.4- and 9.5-fold, respectively. These changes allowed the copepods to conserve a significant portion of food consumed near the surface for transformation to lipid reserves. Diel respiratory oxygen consumption of migrating individuals, calculated so as to include actual duration of residence in layers with different temperature and oxygen concentrations, is estimated at 17.87 μg O2 ind−1. The net energy cost of vertical migration made up only 11.6% of the total. Copepods expend 78.6% of diel energy losses during approximately 10 h in the surface layers, while about 5.4% is required during about 9 h at depth. Hypoxia is shown to have a significant metabolic advantage during diel vertical migrations of C. euxinus in the Black Sea. Received: 1 October 1999 / Accepted: 11 July 2000  相似文献   

11.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

12.
The major inorganic and organic osmolytes responsible for hydrating the oocytes during pre-ovulatory meiotic maturation in autumn- and spring-spawning stocks of Atlantic herring are examined. Despite the ovulated eggs of spring-spawning herring being 1.6- to 2-fold larger than the autumn-spawning stock, the GSI (27 ± 3%) and degree of oocyte hydration (70–72% water) were similar. Normalising the data with respect to dry mass revealed that the physiological mechanisms underlying the maturational influx of water were the same for both classes of egg. Cl, K+ and Pi together with a small pool of free amino acids (FAA) represented the driving forces for oocyte hydration. K+ (autumn and spring) and Pi (spring) maintained their concentrations in the ovulated eggs, while all other ions, including Cl, Na+, NH4 + and Mg2+ were significantly diluted. In contrast the FAA concentration increased during the hydration process. Amongst the inorganic ions, Cl showed the greatest increase in the ovulated eggs. The FAA content doubled from 1.5 to 3.3% of dry mass during oocyte hydration and accounted for 29% of the calculated ovoplasmic osmolality in the ovulated eggs from both autumn- and spring-spawners. This significant osmotic effect of the small pool of FAA was due to the low water content of the benthic eggs. The differential movement of the inorganic and organic osmolytes that underly oocyte hydration in Atlantic herring are discussed in relation to current models of transmembrane ion flux.  相似文献   

13.
Kinetics of glucose and amino acid uptake by attached and free-living bacteria were compared in the upper 70 m of the oligotrophic north-western Mediterranean Sea. Potential uptake rates of amino acids were higher than those of glucose in all the samples analysed. Cell-specific potential uptake rates of attached bacteria were up to two orders of magnitude higher than those of total bacteria, both for amino acids and glucose (0.72–153 amol amino acids cell−1 h−1 and 0.05–58.42 amol glucose cell−1 h−1 for attached bacteria and 0.34–1.37 amol amino acids cell−1 h−1 and 0.07–0.22 amol glucose cell−1 h−1 for total bacteria). The apparent K m values were also higher in attached bacteria than in total bacteria, both for amino acids and glucose. These results would reflect the presence of different uptake systems in attached and free-living bacteria, which is in accordance with the different nutrient characteristics of their microenvironments, ambient water and particles. Attached bacteria show transport systems with low affinity, which characterise a bacterial community adapted to high concentration of substrates. Received: 13 June 2000 / Accepted: 6 December 2000  相似文献   

14.
Developing eggs and larvae of laboratory-reared gilthead sea bream (Sparus aurata) maintained in filtered seawater (40 ppt) at 18°C, were measured for oxygen uptake, ammonia excretion, contents of free amino acids (FAA), protein, fatty acids (FA) accumulated ammonia, and volumes of yolk-sac and oil globule. Absorption of the yolk coincided with the consumption of FAA and was complete ca. 100 h post-fertilisation. Amino acids from protein were mobilised for energy in the last part of the yolk-sac stage. Absorption of the oil globule occurred primarily after hatching following yolk absorption, and correlated with catabolism of the FA neutral lipids. Overall, FAA appear to be a significant energy substrate during the egg stage (60 to 70%) while FA from neutral lipids derived from the oil globule are the main metabolic fuel after hatching (80 to 90%).  相似文献   

15.
In the larvae of many marine teleosts, the stomach is absent until they approach or attain metamorphosis. Consequently, the formation of chyme containing specific free amino acids from the gastric digestion of protein, which are believed to be signals initiating the release of the digestive hormone cholecystokinin (CCK), is lacking. CCK, when secreted into the blood circulation from specialized intestinal cells, stimulates gallbladder motility and is a key factor causing the release of pancreatic digestive enzymes into the gut lumen. Using first-feeding Atlantic herring larvae (Clupea harengus) as a model, the aim of the present study was to determine if a CCK response together with tryptic activity could be elicited in larvae ingesting dietary protein and/or FAA. Larvae were tube fed single lamellar liposome vesicles (SLV) containing: (1) physiological saline (PS), (2) bovine serum albumin (BSA), (3) specific free amino acids (FAA), or (4) a ratio (1:1) of BSA and FAA. The CCK and trypsin levels were then assayed (radio-immunoassay) at 0, 15, 60 and 120 min after tube feeding. A marked CCK response was elicited in all treatments compared to the PS control at 15 and 30 min and was significant (p<0.05) at 120 min after tube feeding. Larvae tube fed the FAA treatment exhibited CCK levels that increased linearly from 1.6 to 5.6 fmol mg-1 dry weight (DW) after 2 h of digestion, although this response was below the BSA and BSA:FAA treatments. The BSA and BSA:FAA treatments, after 15 min of digestion, showed a rapid CCK increase, over the PS and the FAA liposome treatments, to 8.1 and 5.4 fmol mg-1 DW, respectively. At the end of the assay, BSA and BSA:FAA demonstrated similar levels (10.2 and 9.2 fmol mg-1 DW, respectively). Larvae tube fed the PS control or the FAA liposome treatment did not demonstrate any appreciable increase in tryptic activity during the 2 h digestion period (0.03-0.071 and 0.03-0.048 mU mg-1 DW, respectively). In contrast, the BSA:FAA treatment increased from 0.03-0.148 mU mg-1 DW 1 h after feeding, which was significantly (p<0.05) higher than the PS and FAA liposomes, and then decreased markedly (0.085 mU mg-1 DW) after 2 h of digestion. The larvae tube fed BSA liposomes, however, demonstrated steadily increasing tryptic activity throughout the sampling period, attaining 0.255 mU mg-1 DW after 2 h, which was significantly (p<0.05) more than all the other treatments. The results showed that ingested liposomes containing FAA or the protein BSA or a combination of these two nutrients effectively stimulated CCK production in first-feeding herring larvae. In contrast, liposomes containing only physiological saline did not elicit a CCK response. In addition, liposomes containing BSA stimulated tryptic activity in herring larvae, which was not observed in fish fed liposomes that included only FAA or PS. This suggests that a suitable protein substrate is required to regulate protein digestion.  相似文献   

16.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

17.
Artemia franciscana was grown on Isochrysis galbana Green (clone T. Iso) at saturated food concentrations (13 to 20 mg C l−1) for 11 d at 26 to 28 °C, and 34 ppt salinity. Three groups of brine shrimp were used in the feeding experiments: metanauplius III and IV (Group 1), post-metanauplius II and III (Group 2) and post-metanauplius VIII (Group 3), corresponding to 4-, 7- and 11-d-old animals, respectively. The ingestion rate, clearance rate and carbon balance were estimated for these stages at different concentrations of 14C-labeled I. galbana ranging from 0.05 to 30 mg C l−1. The handling time of algae was determined for all three groups. The ingestion rate (I, ng C ind−1 h−1) increased as a function of animal size and food concentration. In all three groups, the ingestion rate increased to a maximum level (I max) and remained constant at food concentrations ≥10 mg C l−1 (saturated food concentrations). The clearance rate (CR, μl ind−1 h−1) increased with increasing food concentration up to a maximum rate (CR max), after which it decreased for even higher food concentrations. The functional response of A. franciscana was most consistent with Holling's Type 3 functional response curve (sigmoidal model), which for the two oldest groups (Group 2 and 3) differed significantly from a Type 2 response (p < 0.05). The gut passage time for the three groups of A. franciscana, feeding on saturated food concentration (20 mg C l−1), varied between 24 and 29 min. As the nauplii developed to pre-adult stage the handling time of the algae increased as a function of animal size. The assimilation rate (ng C ind−1 h−1) in the youngest stages (Group 1 and 2) increased with increasing food concentrations, reaching a maximum level close to 10 mg C l−1. At higher food concentrations the assimilation rate decreased, and the proportions of defecated carbon increased, reaching 60 to 68% in the post-metanauplius stages (Group 3). The assimilation efficiency (%) was high at the lowest food concentrations in all three groups (89 to 64%). At higher concentrations, the assimilation efficiency decreased, reaching 56 to 38% at the highest concentrations. Received: 2 February 2000 / Accepted: 25 March 2000  相似文献   

18.
This paper reports on the feeding biology of a predatory and of a facultatively predatory nematode, Enoploides longispiculosus and Adoncholaimus fuscus, respectively. Both species represent genera which are common and abundant in the littoral of the North Sea and in adjacent estuaries. Observations on the foraging behaviour of both species are given, and for the former species, a range of prey from its natural habitat is identified. Respiration was determined using a polarographic oxygen electrode technique and compared to consumption determined as predation rates on the monhysterid nematode Diplolaimelloides meyli. The daily C-loss due to respiration accounted for 15% of the measured C-consumption in E. longispiculosus and for 111% in A. fuscus, proving the observed feeding rates in the latter species to have been inadequate for the maintenance of its aerobic metabolism. Daily respiration rates at an average environmental temperature were 219 ng C ind−1 d−1 for adults of A. fuscus and 21.9 ng C ind−1 d−1 for adults of E. longispiculosus. Using radiotracer techniques, no uptake of bacterial cells or of organic matter in the dissolved phase was demonstrated for E. longispiculosus. In A. fuscus, however, a significant drinking of label in the dissolved or volatile fraction occurred; bacterial cells were taken up at a level insignificant to the nematode's daily C-ration. It is concluded that E. longispiculosus has a fairly strict predatory feeding strategy, while A. fuscus gains a majority of C from additional foraging strategies, among which the uptake of dissolved material and scavenging on macrofauna carcasses (as reported in the literature) may be of particular importance. Received: 28 August 1998 / Accepted: 8 March 1999  相似文献   

19.
 The European fanworm Sabella spallanzanii (Gmelin, 1791) was recently introduced to Port Phillip Bay and is now a conspicuous component of most benthic communities. Reproduction of the worm was investigated in a population at Queenscliff over a 2 yr period (October 1995 to October 1997) using gonadal histology. The worms are dioecious (sex ratio 1:1, n=250), and attained sexual maturity at ∼50 mm body length. Reproductive periodicity followed a distinct annual cycle, and spawning proceeded through an extended autumn/winter period. Spawning was broadly synchronous between sexes, and coincided with falling seawater temperatures and shorter day-lengths. The females were highly fecund, and >50 000 eggs were probably shed from large females (>300 mm body length) during the annual spawning period. Breeding cycles of S. spallanzanii in Port Phillip Bay are ∼6 mo out of phase with endemic populations located at similar latitudes in the northern hemisphere. The spread of S. spallanzanii within Port Phillip Bay has been monitored by divers on an annual basis since 1994. The most recent dive survey (1998) indicates that S. spallanzanii has extended its range through out the entire 2000 km2 embayment, and has invaded most subtidal habitats. Quantitative estimates of S. spallanzanii abundances were highest on pier pylons (12.5 individuals m−2, 0.5 to 7 m depths). On sediments, estimates were highest at shallow sites (0.3 m−2, 7 m depth), but numbers declined significantly with depth (0.1 m−2, 17 to 22 m depth). Mean worm lengths and biomass were, by contrast, significantly higher at intermediate depths (12 to 17 m) than in shallower (7 m) or deeper (22 m) locations. S. spallanzanii demonstrates a clear preference for growth in sheltered, nutrient-enriched waters, so it may not spread from Port Phillip Bay into the adjacent oceanic waters of Bass Strait; however, in view of S. spallanzanii's current high abundance, fecundity and extended spawning periodicity, there is a high risk of future range expansions, mediated by shipping, into other temperate-water ports. Received: 17 November 1998 / Accepted: 6 January 2000  相似文献   

20.
This study investigated the occurrence and ontogenetic changes of halogenated secondary metabolites in planktotrophic and lecithotrophic larvae and adults of two common, infaunal polychaetes, Streblospio benedicti (Spionidae) and Capitella sp. I (Capitellidae), with different life-history traits. S. benedicti contains at least 11 chlorinated and brominated hydrocarbons (alkyl halides) while Capitella sp. I contains 3 brominated aromatic compounds. These halogenated metabolites are potential defense compounds benefiting both larvae and adults. We hypothesized that: (1) planktotrophic larvae contain halogenated metabolites because they are not protected by adult defenses, (2) quantitative and qualitative variation of planktotrophic larval halogenated metabolites parallels that of adults, and (3) brooded lecithotrophic larvae initiate the production of halogenated metabolites only after metamorphosis. To address these hypotheses, volatile halogenated compounds from polychaete extracts were separated using capillary gas chromatography and identified and quantified using mass spectrometry with selected ion monitoring. All four life stages (pre- and post-release larvae, new recruits, adults) of both S. benedicti and Capitella sp. I contained the halogenated metabolites previously identified from adults. This is the first report of halocompounds identified and quantified in polychaete larvae. Allocation of potential defense compounds to offspring varied as a function of species, feeding type and developmental stage. Pre-release larvae of S. benedicti with planktotrophic development contained the lowest concentration of total halogenated metabolites (1.75 ± 0.65 ng mm−3), post-release and new recruits contained intermediate concentrations (8.29 ± 1.72 and 4.73 ± 2.63 ng mm−3, respectively), and planktotrophic adults contained significantly greater amounts (28.9 ± 9.7 ng mm−3). This pattern of increasing concentrations with increasing stage of development suggests synthesis of metabolites during development. Lecithotrophic S. benedicti post-release larvae contained the greatest concentrations of halometabolites (71.1 ± 10.6 ng mm−3) of all S. benedicti life stages and developmental types examined, while the amount was significantly lower in new recruits (34.0 ± 15.4 ng mm−3). This pattern is consistent with a previously proposed hypothesis suggesting a strategy of reducing potential autotoxicity during developmental transitions. Pre-release lecithotrophic larvae of Capitella sp. I contained the highest concentration of total halogenated metabolites (1150 ± 681 ng mm−3), whereas the adults contained significantly lower total amounts (126 ± 68 ng mm−3). All concentrations of these haloaromatics are above those known to deter predation in previously conducted laboratory and field trials. As a means of conferring higher larval survivorship, lecithotrophic females of both species examined may be expending more energy on chemical defenses than their planktotrophic counterparts by supplying their lecithotrophic embryos with more of these compounds, their precursors, or with energy for their synthesis. This strategy appears common among marine lecithotrophic larval forms. Received: 14 July 1999 / Accepted: 20 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号