首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
T. Kobari  T. Ikeda 《Marine Biology》1999,134(4):683-696
Vertical distribution and population structure of Neocalanus cristatus were investigated at Site H in the Oyashio region from September 1996 through October 1997 to evaluate their life cycle mode. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of life cycles of this species. At Site H, N. cristatus spawned throughout the year below 500 m depth, with a peak from October to December. The resulting eggs and nauplii floated/migrated upward, and formed an abundance peak of Copepodite Stage 1 (C1) in the surface layer in February. In the surface layer, the C1 developed and reached C5 by early June through a phytoplankton bloom which occurred in mid-March to end of June. The C5 migrated to deeper layers in July and August, where they molted to adults. Apparently, the developmental time from C5 to adults was highly variable (>1 month), and some might overwinter. The life cycle of N. cristatus appeared to be annual for the major portion of the population. Taking into account sampling season, temporal changes in vertical distribution and population structure data collected from regions other than Site H, there was a close correlation in the timing of the life cycle over the entire subarctic Pacific, but the reproduction season (April to June) was observed to be different in the Okhotsk and Japan Sea populations. Regional comparison of prosome length of C5 individuals, including those in the Bering Sea, indicated significantly larger sizes of specimens from the Japan Sea and Okhotsk Sea, as compared with those from the entire subarctic Pacific. Possible causes for regional variability in life cycle patterns and body sizes are discussed. Received: 18 December 1998 / Accepted: 19 April 1999  相似文献   

2.
Portions of the mitochondrial genome (ca. 4 kb), encoding three protein-coding (COI, ND4L, ND6) and two ribosomal RNA (srRNA, lrRNA) genes, were sequenced for all six currently recognized species, plus one form, of the pelagic calanoid copepod genus Neocalanus. In Neocalanus gracilis, the ND6 gene was not found in the sequenced portion of the mitochondrial genome. Unambiguously aligned sequences were subjected to Bayesian, maximum-likelihood, maximum-parsimony, and neighbor-joining analyses using Eucalanus bungii as an outgroup. The resultant tree topologies from these four methods were congruent, robust, and all nodes were supported by high bootstrap values and posterior probabilities of 92–100%. Two tropical and subtropical species (N. gracilis and N. robustior) occupied the most basal position, and a subantarctic (N. tonsus) and three subarctic Pacific species (N. cristatus, N. plumchrus, and N. flemingeri) diverged subsequently. Transequatorial dispersal of the ancestral population during glaciations is suggested for this pattern of speciation, in which sister clades exhibited antitropical distributions. Although the area of ocean is much broader in the subantarctic than the subarctic Pacific, a higher number of species occur in the subarctic Pacific (three) than the subantarctic (one). The possibility that marginal seas, such as Japan Sea and Okhotsk Sea, function as natal areas for the divergence of species is discussed.  相似文献   

3.
A. Tsuda  H. Sugisaki 《Marine Biology》1994,120(2):203-210
Time series sampling with a multi-layer plankton sampler was carried out in the western subarctic North Pacific during spring 1991. Neocalanus cristatus, N. flemingeri and Eucalanus bungii dominated and accounted for 88.5% of the copepod population in volume. Neocalanus spp. were distributed in the upper mixed layer, while E. bungii was mainly distributed between 120 and 300 m throughout the day and night. In contrast, Metridia pacifica, Pleuromamma scutullata and Gaetanus simplex showed clear diel vertical migration. Grazing activities were estimated simultaneously by gut fluorescence. Nocturnal grazing was observed for diel migrating species. Neocalanus spp. did not have a diel feeding rhythm and had relatively low gut fluorescence. E. bungii was considered to be dormant during the observation period. The estimated grazing rate of the copepod population on phytoplankton was 1.4 to 2.0% of the primary production while the metabolic requirement was 8.3 to 12.4% of the primary production. These facts suggest that the copepod population was unimportant as primary consumers and that microzooplankton plays a much more important role in sustaining low standing stock of phytoplankton and a high nutrient concentration in the western subarctic Pacific Ocean.  相似文献   

4.
The relationship between otolith length and body length (total length) was examined in walleye pollock Theragra chalcogramma (Pallas), collected from Pacific Ocean waters adjacent to Hokkaido, Japan, and in larvae reared from fertilized eggs. A linear relationship was found between log-transformed body length and otolith length data with two inflection points at ca. 11 mm and 100 mm total length. This relationship was found to be applicable also to samples from the Japan Sea, Bering Sea and Okhotsk Sea. The early growth pattern estimated by back-calculation of otolith increments of 1-yr fish from Funka (Uchiura) Bay (Hokkaido) accorded with that obtained from size-at-age data of 0 yr fish collected in the preceding year. Differences were found in comparisons of the back-calculated early growth pattern between samples from waters adjacent to Hokkaido, the Pacific Ocean, the Japan Sea and the Okhotsk Sea. The growth curve of the Okhotsk samples was markedly different from others, showing rapid initial growth up to about 100 d after hatching and attaining a small body size in the first year.  相似文献   

5.
Abundance, stage composition and reproductive parameters (egg production, egg viability, proportion of spawning females) of the four copepod species Acartia clausi, Centropages hamatus, C. typicus and Temora longicornis were measured at the long term sampling station Helgoland Roads (German Bight, southern North Sea) from September 2003 to May 2004 to study their overwintering strategies. A. clausi was overwintering as females with arrested reproduction from November to January. T. longicornis, which is known to produce resting eggs in the North Sea, had a pelagic population with all developmental stages present during winter and reproductive rates closely related to food concentrations. Although their females produced eggs in response to ambient food conditions, both C. hamatus and C. typicus were rare in the pelagic. The C. hamatus population returned in May, probably from resting eggs, whereas C. typicus depended on advection. The Centropages species seemed to be less adapted to pelagic life in winter than A. clausi and T. longicornis. Sporadic occurrence of large numbers of nauplii and young copepodids of A. clausi and Centropages spp. pointed to different overwintering strategies or more successful survival in adjacent regions and advection of them into the waters around Helgoland island. While A. clausi was decoupled from environmental conditions in late autumn and winter, the other species were able to respond to variations in the food environment. Thus, egg production of T. longicornis increased during an unusual autumn diatom bloom.  相似文献   

6.
Metabolism [respiratory oxygen consumption, electron-transfer-system (ETS) activity] and body composition [water, ash, carbon (C), nitrogen (N), carbon/nitrogen (C/N) ratio] of stage C5/C6 Neocalanus cristatus from 1000 to 2000 m depth of the Oyashio region, western subarctic Pacific, were determined during the period of July 2000 through June 2003. Compared with the C5 specimens from shallow depths (<250 m), those from 1000 to 2000 m were characterized by quiescent behavior, reduced respiration rates (30% of the rates at active feeding), very low water content (61–70% of wet weight), but high C content (56–64% of dry weight) and C/N ratios (7.2–10.6, by weight). Artifacts due to the recovery of live specimens from the bathypelagic zone appeared to be unlikely in this study, as judged by the consistent results between re-compression (100 atm) and non-compression (1 atm) respiration experiments, and between ETS activities and respiration rates directly measured. In addition, the respiration rates of C6 males and females of N. cristatus from the same 1000–2000 m depth were two to three times higher than the rates of C5 individuals, but were similar to the rates of a bathypelagic copepod, Paraeuchaeta rubra. Combining these results with literature data, C budgets of: (1) diapausing C5 specimens, weighing 6–10 mg dry weight; (2) molt to C6 females; and (3) the complete the life span were established, taking into account assorted losses in respiration during diapause at stages C5 and C6, molt production and egg production. Respiratory C losses by C5 and C6 specimens were estimated on the basis of body N as adjusted metabolic rates [AMR; µl O2 (mg body N)–0.843 h–1], then N budgets were also computed subtracting N lost in the form of cast molts and eggs from the initial stock. Calculations revealed that allocation of the C stock was greatest to egg production (34–57%), followed by respiration (27%) and cast molts (3%), leaving residual C of 13–36% in spent C6 females. The present results for N. cristatus from the North Pacific are compared with those of Calanus spp. in the North Atlantic.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

7.
Y. Yamada  T. Ikeda  A. Tsuda 《Marine Biology》2002,141(2):333-341
Abundance and life-cycle features of the mesopelagic hyperiid amphipod Primno abyssalis (formerly P. macropa) in the Oyashio region, western subarctic Pacific, were investigated using samples collected between July 1996 and July 1998. P. abyssalis was collected throughout the entire survey period, with abundance peaks occurring in spring to autumn. While all maturity stages of males and females were observed throughout the study period, the peak reproduction season was in summer. Instar analysis based on the segment number of the pleopod rami indicated that hatched juveniles molted 10 times before becoming adult males and 13 times before becoming adult females. Judging from the dry and ash-free dry weights of each instar, males and females continued to feed throughout the final instar stage. Based on cohort analysis of seasonal samples and laboratory observations on molting frequencies, growth in body length of P. abyssalis was linear with time, and estimated generation lengths were 2.3-3.8 years for females and 1.4-1.9 years for males. Brood size of females ranged from 66 to 337 and increased with increasing female body length. Lifetime fecundity, calculated as the sum of six successive broods, was 1,004. Compared with P. abyssalis in the southern Sea of Japan, those in the Oyashio region have a larger number of adult instars (six versus five for females, three 3 vs one for males), a lower growth rate (0.014 mm day-1 vs 0.021 mm day-1), and mature earlier (instar 13 vs instar 15 for females; instar 10 vs instar 11 for males). These characteristics are considered to be advantageous life-history traits to counteract higher niche competition within the mesopelagic community and higher predation pressure by mesopelagic fishes in the Oyashio region than in the Sea of Japan.  相似文献   

8.
The seasonal and spatial distribution of Pseudocalanus acuspes in the Bornholm Basin (Central Baltic Sea) was studied on 16 cruises between March 2002 and May 2003 from stratified (10 m) multinet samples. The highest abundances were reached in May 2002 and April 2003 (618×103 and 869×103 ind. m−2, respectively). Ontogenetic vertical distribution was stage specific with differences of mean annual weighted mean depth >30 m between nauplii and males; it followed closely the hydrography which was characterized by a permanent halocline and a summer thermocline. The vertical distribution showed a positive correlation with salinity especially in the older developmental stages; the relationship to temperature was negative in the nauplii and copepodite stage I (CI). Most of the stages performed a seasonal migration. The consequences of the vertical distribution patterns in relation to the effects of climate and predation are discussed. A stage shift from nauplii in April/May to CIV and CV as overwintering stages indicated slow seasonal development. However, nauplii were observed all the year round, and the resulting stage structure did not allow to distinguish generations. Changes in the prosome length of females seemed to be related to the advection of water masses with different temperatures rather than to different generations. It could not be clarified whether the strong increase of nauplii and adults after an inflow event of cold, saline North Sea water in the beginning of 2003 was a result of advection or improvement in habitat conditions.  相似文献   

9.
A typical subarctic copepod,Neocalanus cristatus, occurred in the mesopelagic layer (500 to 1000 m) in Sagami Bay, central Japan, throughout the year. Specimens were collected from 1982 to 1986. A small number of adult females were distributed from 800 to 900 m only, but no adult males were collected. This species appeared to be abundant in April and August, when intermediate Oyashio water flowed strongly into Sagami Bay. Mean prosome lengths of copepodite stages IV and V and adults were 4.33, 6.87 and 6.87 mm, respectively. The condition factor [wet wt/(prosome length)3 × 100] of copepodite stage V did not vary remarkably, and mean values ranged from 4.7 to 5.0. Prosome length, body weight and condition factor ofN. cristatus collected from Sagami Bay were smaller than those of copepods in the northern North Pacific.N. cristatus transported from the north cannot molt to adult stages (except for those originating in mesopelagic waters) due to the adverse environmental conditions in Sagami Bay; instead, they die in the mesopelagic layer and sink to the bathypelagic layer (1 000 to 1 400 m), close to the bottom. Since nauplii and early copepodite stages did not occur in any season,N. cristatus probably do not reproduce in Sagami Bay.  相似文献   

10.
The molecular diversity of symbiotic dinoflagellates associated with the widespread western Pacific coral Plesiastrea versipora was explored in order to examine if associations between reef-building corals and symbiotic dinoflagellates change with environment. Several ribosomal DNA genes with different evolutionary rates were used, including the large subunit (28S), the 5.8S region and the internal transcribed spacers (ITS). The phylogenetic analysis of the 28S and 5.8S rDNA regions indicated that a single endosymbiont species, highly related to one of the species of Symbiodinium in clade C (= Symbiodinium goreaui, Trench et Blank), associates with P. versipora along the Ryukyu Archipelago. The persistence of the same endosymbiont within P. versipora across this wide array of latitudes may be a result of such features as the Kuroshio Current, which brings tropical temperatures as far north as Honshu, Japan. Analysis of the faster evolving ITS rDNA region revealed significant genetic variability within endosymbionts from different populations. This variation was due to a high degree of interpopulation variability, based on the proportion of pairwise variation detected among the populations (0.95% approximately). By comparison with other studies, the results also indicate that some ITS1 haplotypes from P. versipora endosymbionts seem to be widely distributed within the western Pacific Ocean, ranging from the Great Barrier Reef to the northeast of the China Sea.  相似文献   

11.
The genetic structure and phylogeography of the brown seaweed Sargassum horneri/filicinum complex in Japan were studied based on the mitochondrial cox3 haplotype. The cox3 haplotypes found were divided into three clades in a statistical parsimony network, among which there were large numbers of steps. Contrary to the reported large amount of drifting S. horneri along the Japanese coast, the three clades were dividedly distributed on the Japanese coast: the northern Pacific, the central Pacific, and western Japan. The western Japan S. horneri had haplotypes that were phylogenetically closer to those of S. filicinum than to the northern and central Pacific S. horneri populations. The S. filicinum populations were included within the western Japan clade and grouped together with the S. horneri samples from western Japan. Taken together with the unstable morphological diagnosis, this result suggests that S. filicinum should be reduced into a synonymy of S. horneri. The TMRCA analysis suggested that the divergence time of each clade may go back to the last interglacial period and a skyline plot suggested that the last glacial maximum had only a small effect on the population size of S. horneri. The geographic subdivision of the three groups, in spite of a large amount of drifting mats, suggests a limited contribution of drifting mats to gene flow on a large geographic scale. On a small geographic scale, a small number of haplotypes were shared between S. horneri-type and S. filicinum-type populations. This result suggests that populations of these two types are partially, though not completely, isolated from each other, possibly by selfing in S. filicinum-type populations or by a difference in peak reproduction.  相似文献   

12.
13.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

14.
The growth and production of the inshore marine copepod Pseudodiaptomus marinus was studied in the central part of the Inland Sea of Japan. The stage-specific growth rate was determined under controlled laboratory conditions by examining the length-weight relationship and development rates at various temperatures. The stage duration was short and constant from NII to CII, beyond which development was retarded. Males developed faster than females in CIV and CV. The specific growth rate was highest in copepodite stages followed by the nauplii and adult females (=egg production rate). The daily production of P. marinus was estimated from the stage-specific growth rate and stage-specific abundance in nature as the sum of the individual stages. The production changed seasonally with water temperature and population biomass. Daily production and biomass (P/B) ratios increased linearly with temperature. Total annual production was 20.7 mg C m-3 yr-1.  相似文献   

15.
In a previous study on the kuruma shrimp Penaeus japonicus from the South China Sea, we detected high genetic divergence between two morphologically similar varieties (I and II) with distinct color banding patterns on the carapace, indicating the occurrence of cryptic species. In the present study, we clarify the geographical distribution of the two varieties in the western Pacific by investigating the genetic differentiation of the shrimp from ten localities. Two Mediterranean populations are also included for comparison. Based on the mitochondrial DNA sequence data, the shrimps are separated into two distinct clades representing the two varieties. Variety I comprises populations from Japan and China (including Taiwan), while variety II consists of populations from Southeast Asia (Vietnam, Singapore and the Philippines), Australia and the Mediterranean. Population differentiation is evident in variety II, as supported by restriction profiles of two mitochondrial markers and analysis of two microsatellite loci. The Australian population is genetically diverged from the others, whereas the Southeast Asian and Mediterranean populations show a close genetic relationship. Variety I does not occur in these three localities, while a small proportion of variety II is found along the northern coast of the South China Sea and Taiwan, which constitute the sympatric zone of the two varieties. The present study reveals high genetic diversity of P. japonicus. Further studies on the genetic structure of this species complex, particularly the populations in the Indian Ocean and Mediterranean, are needed not only to understand the evolutionary history of the shrimp, but also to improve the knowledge-based fishery management and aquaculture development programs of this important biological resource.  相似文献   

16.
The kuruma shrimp Penaeus japonicus is widely distributed throughout the Indo-West Pacific. Two morphologically similar varieties, I and II, are recognized from the South China Sea. The two varieties are characterized by different color banding patterns on the carapace, but there are no distinct differences in morphometric traits between them based on measurement of 13 characters. Sequence data and restriction profiles of the mitochondrial genes reveal that these two varieties represent distinct clades, with sequence divergences of about 1% (473 bp) in 16S rRNA, 6–7% (504 bp) in cytochrome oxidase I, and 16–19% (470 bp) in the control region. Analysis of amplified fragment length polymorphism confirms that the two varieties are genetically distinct. We also investigated the geographical distribution of the two varieties in the western Pacific by analyzing specimens collected from Japan and Singapore. Shrimps from Japan and Singapore have been found to belong to varieties I and II, respectively, suggesting that the two varieties have different geographical distribution. Phylogenetic study reveals that the two varieties are more closely related to each other than to the other phylogenetically related Penaeus species. Results from this study suggest the occurrence of two cryptic species in the kuruma shrimp P. japonicus.Communicated by M.S. Johnson, Crawley  相似文献   

17.
H. Hattori 《Marine Biology》1989,103(1):39-50
Diel changes in fine-scale vertical distributions of three calanoid copepods Metridia pacifica, M. okhotensis and Pleuromamma scutullata in the subarctic waters of the western North Pacific were examined. Sampling was carried out in June and August 1983, at two stations in Oyashio water using a Longhurst-Hardy Plankton Recorder (LHPR). Sampling, down to about 1 000 m, was repeated four to five times at intervals of several hours. Vertical resolution was 5 to 40 m. Copepods were concentrated in two strata, the surface (0 to 60 m) and the mesopelagic (200 to 300 m) layers, throughout the day at both stations. Younger M. pacifica (C III and C IV) were dominant in both strata. Although most female C V and adult females demonstrated diel vertical migration at 20 to 30 m h-1, a significant number of females did not migrate upward but remained in the deep stratum at night. The same trend was evident in M. ohkotensis and P. scutullata. Foregut content observations indicated that feeding activities of the deep mode populations were as high as those of the surface mode, though food of deep individuals was different. Such a bimodal distribution may increase intraspecific diversity of copepod populations and is possibly why metridiid copepods dominate during late summer to winter in the relatively simple ecosystems of high latitudes.  相似文献   

18.
S. Uye  C. Huang  T. Onbe 《Marine Biology》1990,104(3):389-396
The ontogenetic diel vertical migration of the planktonic copepodCalanus sinicus was investigated in the Inland Sea of Japan in summer 1988, when the water was thermally stratified with a thermocline of ca 5 °C between 35 and 45 m. Stage-specific differences in the diel vertical migration behavior ofC. sinicus were found. Eggs were spawned primarily within the surface-waters between midnight and dawn by ascending females, and sank gradually to deeper waters until they hatched into nauplii. Non-feeding nauplius stages (NI and II) were distributed throughout the water column, but the first feeding stage (NIII) performed an ontogenetic upward migration. NIV to VI and copepodite (C) stages I to III continuously aggregated in the phytoplankton-rich euphotic layer. However, the depth of the median CI to III populations descended as stage progressed. The onset of prominent diel vertical migration took place in CIV, and the amplitude of vertical migration increased with age, being maximal in adult females (CVI). Adult males (CVI), however, remained in the layer below 20 m, and did not migrate dielly. The ecological significance of ontogenetic diel vertical migration is discussed.  相似文献   

19.
The genetic structure of the flounders Platichthys flesus L. and P. stellatus Pallas was investigated on different spatial scales through analysis of allozyme variation at 7 to 24 polymorphic loci in samples collected from different regions (Baltic Sea, North Sea, Brittany, Portugal, western Mediterranean, Adriatic Sea, Aegean Sea and Japan) in 1984 to 1987. No geographic variation was evident within a region. Some pattern of differentiation by distance was inferred within the Atlantic, while the Mediterranean comprised three geographically isolated populations and was itself geographically isolated from the Atlantic (fixed allele differences at up to three loci were found among P. flesus populations from the Atlantic, the western Mediterranean, the Adriatic Sea, the Aegean Sea and also P. stellatus from the coast of Japan). Sea temperature during the reproductive period probably acts as a barrier to gene flow between populations. Genetic distances among European flounder populations (P. flesus) were higher than, or of the same magnitude as, the genetic distance between Pacific (P. stellatus) and European flounder populations, suggesting that P. flesus is paraphyletic and/or there is no phylogenetic basis to recognising P. stellatus as a different species. The divergence between P. flesus and P. stellatus was thus inferred to be more recent than the divergence between the present P. flesus populations from the NE Atlantic and eastern Mediterranean. The eastern Mediterranean populations are thought to originate from the colonisation of the Mediterranean by a proto-P. flesus/P. stellatus ancestor, whereas the present western Mediterranean population has undergone a more recent colonisation event by P. flesus. Patterns of mitochondrial DNA variation, established on a smaller array of P. flesus samples, were in accordance with the geographic patterns inferred from the allozyme survey. In addition, they supported the hypothesis of a two-step colonisation of the western Mediterranean. These results contribute to our understanding of the biogeography of the Mediterranean marine fauna, especially the group of boreal remnants to which P. flesus belongs. Received: 7 February 1997 / Accepted: 26 March 1997  相似文献   

20.
The biology of the chaetognath Sagitta elegans Verrill has been much researched, but detailed studies of population structure have generally been conducted in coastal water where dynamic tidal conditions may cause difficulty in interpretation of data. The resolution of sampling examining vertical distribution and diurnal migration has also been rather coarse. During a series of eight cruises to a seasonally thermally stratified sampling site in the Celtic Sea in 1978 and 1979, detailed vertical zooplankton profiles were taken to study the seasonal population structure, vertical distribution and migration of this species. The overwintering stock of S. elegans (22 to 52 individuals m-2, 0 to 90 m) had a wide range of lengths (5 to 20 mm) and matured in 1978 from early March, spawning several times before dying out by late July. Young produced by the overwintering stock started to mature in July and population numbers reached their highest in August (2483 m-2, 132.8 mg C m-2) when sea temperature peaked (17.1°C). By October, the population of S. elegans declined (284 m-2), which was thought to be due to a combination of lower sea-water temperature, competition for and availability of food, and predation. Because of the length range of the overwintering population (5 to 20 mm), it is assumed that reproduction continued at a low level over the winter, although eggs were not found in January and February, the coldest months of the year. In summer, the smallest S. elegans (2 to 6 mm) were found in the near-surface waters and did not migrate, but as their lengths increased they occupied deeper depth ranges and a portion of the population started to migrate diurnally. Individuals which did not migrate and stayed in the warmer surface waters, or those which migrated into it, matured faster than those remaining in the colder water below the thermocline. Migration to surface waters by mature individuals seemed to be stopped by high surface temperatures (17°C) and a sharp thermocline (3 C°). As sea temperature increased during the year from the winter minimum of 7.7°C, S. elegans matured at a progressively shorter length (14 mm in March 1978 to 10 mm in August). There are probably only three generations of S. elegans a year in the Celtic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号