首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The rapid growth of insects that feed on tree leaves in the spring is believed to be due to high nutritional quality. This study tested the hypothesis that both high nutritional quality and low levels of oxidative stress (i.e., toxicological effects) benefit caterpillars that feed in the spring. Fourth-instar larvae of Lymantria dispar (Lepidoptera: Lymantriidae) were used to bioassay the leaves of two contrasting host plants in the spring and summer: red oak (Quercus rubra), a high-quality host, and sugar maple (Acer saccharum), a low-quality host. On spring foliage, the combined effects of rapid consumption rate, efficient nutrient assimilation, and high nutritional quality allowed larvae to grow rapidly and attain larger body mass. Ellagitannins, a major source of oxidative stress in the midgut, were at higher concentrations in the spring than in the summer in maple leaves, but were at negligible levels throughout the growing season in oak. Thus, the impact of phenolic defenses (measured as semiquinone free radicals and oxidized glutathione in the midgut) was not decreased in spring-feeding larvae. Instead, oxidative stress in larvae on maple remained at elevated levels in the spring and summer. By contrast, larvae that fed on oak had consistently low levels of oxidative stress. We conclude that oak and maple were better host plants in the spring because of their higher nutritional quality, and not because of a lower effectiveness of their chemical defenses. This work emphasizes the need to measure not only foliar nutritional and phenolic chemistry but also specific physiological responses in the herbivore, such as oxidative stress. These physiological mechanisms add to our understanding of why spring-feeding life-history strategies have evolved in some insect herbivores.  相似文献   

2.
Coniferous trees of different species, or of the same species growing at different locations, vary in the extent to which they are attacked by various herbivores and pathogens. Plant secondary metabolites might be a key to understanding some of this variation. At the site level, we investigated if there was an intra- or interspecies pattern for individual compounds (or for groups of compounds) and their relationship to indices of plant nitrogen and plant productivity. For example, do plants exhibit similar covariance in defence compounds when evaluated across a number of sites varying in productivity? Here, we concentrated on the phenolic profile of Pinus sylvestris, Picea abies, Juniperus communis and Pinus contorta. Our results indicate striking differences in secondary chemistry profiles of the twigs including needles of the trees and in the inter-relationships amongst individual compounds and groups of compounds. Flavonols occurred in high variety in P. sylvestris and were highly correlated with each other, differing from P. contorta. But the results of the factor analyses indicate an underlying pattern for flavonols of the coumaroyl type for P. contorta. In contrast, the compounds of the other tree species showed a low degree of inter-correlation. Co-occurring phenolics of different tree species were not correlated. Overall, our analysis of site indices indicated that plant productivity was not a useful predictor for the concentration of specific phenolics. The relationship amongst plant nitrogen and specific phenolics might be the result of two defence strategies (one related and the other not related to nitrogen content). This might enable the plant to shift its defences against attacks with a high degree of flexibility.  相似文献   

3.
Summary During foraging, natural enemies of herbivores may employ volatile allelochemicals that originate from an interaction of the herbivore and its host plant. The composition of allelochemical blends emitted by herbivore-infested plants is known to be affected by both the herbivore and the plant. Our chemical data add new evidence to the recent notion that the plants are more important than the herbivore in affecting the composition of the volatile blends. Blends emitted by apple leaves infested with spider mites of 2 different species,T. urticae andP. ulmi, differed less in composition (principally quantitative differences for some compounds) than blends emitted by leaves of two apple cultivars infested by the same spider-mite species,T. urticae (many quantitative and a few qualitative differences). Comparison between three plant species — apple, cucumber and Lima bean — reveals even larger differences between volatile blends emitted upon spider-mite damage (many quantitative differences and several qualitative differences).  相似文献   

4.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

5.
Summary. We investigated the biochemical transformation of individual phenolic compounds of mountain birch leaves in larvae of six birch-feeding sawfly species: Amauronematus amplus, Pristiphora alpestris, Nematus brevivalvis, Priophorus pallipes, Arge sp. and Nematus viridis by comparing the phenolic residues in larval faeces to those of their leaf diet. Partial hydrolysis of hydrolysable tannins, isomerisation of chlorogenic acid and glycosylation of flavonoid aglycones were observed in all studied species. Moreover, we found considerable among-species variation in the composition of phenolic compounds in larval faeces. In addition to foliar phenolics, seventeen non-foliar phenolic metabolites, including eight phenolic acids and nine flavonoid glycosides were detected from the faeces. Of the non-foliar phenolic acids, four were egested species-specifically and only two by all six sawfly species. We also detected differences in the ratios of chlorogenic acid isomers in the faeces of different species, which can indicate different physiological conditions in the guts of studied larvae. In addition to the qualitative differences, quantitative differences were detected in the egestion of chlorogenic acids, possible o-quinone precursors in the larvae. Detected differences, either qualitative or quantitative, could not be explained by seasonal changes in the content of compounds in the leaf diet.  相似文献   

6.
Many plant families have aromatic species that produce volatile compounds which they release when damaged, particularly after suffering herbivory. Monarda fistulosa (Lamiaceae) makes and stores volatile essential oils in peltate glandular trichomes on leaf and floral surfaces. This study examined the larvae of a specialist tortoise beetle, Physonota unipunctata, which feed on two M. fistulosa chemotypes and incorporate host compounds into fecal shields, structures related to defense. Comparisons of shield and host leaf chemistry showed differences between chemotypes and structures (leaves vs. shields). Thymol chemotype leaves and shields contained more of all compounds that differed than did carvacrol chemotypes, except for carvacrol. Shields had lower levels of most of the more volatile chemicals than leaves, but more than twice the amounts of the phenolic monoterpenes thymol and carvacrol and greater totals. Additional experiments measured the volatiles emitted from M. fistulosa in the absence and presence of P. unipunctata larvae and compared the flower and foliage chemistry of plants from these experiments. Flowers contained lower or equal amounts of most compounds and half the total amount, compared to leaves. Plants subjected to herbivory emitted higher levels of most volatiles and 12 times the total amount, versus controls with no larvae, including proportionally more of the low boiling point chemicals. Thus, chemical profiles of shields and volatile emissions are influenced by the amounts and volatilities of compounds present in the host plant. The implications of these results are explored for the chemical ecology of both the plant and the insect.  相似文献   

7.
High levels of polyphloroglucinol phenolics in marine brown algae are usually interpreted as a defensive response to herbivory. However, tropical brown algae generally contain very low levels of phenolics, even though herbivory in many tropical systems (e.g. coral reefs) is intense. This apparent paradox would be explained if polyphenolics did not deter tropical herbivores, in which case selection by herbivores for high levels of phenolics in tropical algae would be weak. To examine this hypothesis, in February 1989 we presented mixed assemblages of herbivorous fishes on the Great Barrier Reef with tropical, phenolic-poor brown algae (primarilySargassum spp.) and closely related (conspecifics in one instance) phenolic-rich temperate species. Different species of brown algae were eaten at very different rates, but these differences were not correlated with variation in the phenolic levels among the plants. TLC and NMR analyses showed no evidence of other, non-polar, metabolites in these algae, with the exception of the temperate speciesHomoeostrichus sinclairii. Thus, variation in non-polar metabolites also did not explain the differences in susceptibility to herbivores among these algae. We conclude that the herbivorous fishes studied here were not deterred by phenolic-rich algae, which suggests that levels of phenolics in many tropical algae may generally be low due to their ineffectiveness as defences. However, alternative explanations for the pattern are possible, and these are discussed.  相似文献   

8.
In order to test three hypotheses on digestive constraints that may have affected the colonization of land by isopods, two marine isopods and one semi-terrestrial species were screened for their ability to oxidize phenolic compounds and digest cellulose in natural and artificial diets. Ligia pallasii (Isopoda: Oniscidea) and Gnorimosphaeroma oregonense (Isopoda: Sphaeromatidea) oxidized dietary phenolics, but Idotea wosnesenskii (Isopoda: Valvifera) did not, even though it feeds on seaweeds that are rich in phenolics. All three species were able to digest some cellulose, but this ability was least developed in the marine phytophagous species, Idotea wosnesenskii, and best developed in the semi-terrestrial L. pallasii. After reducing the number of endosymbiotic bacteria in the hepatopancreas (midgut digestive gland) by feeding antibiotics, cellulose digestion in L. pallasii was significantly reduced. Our results are consistent with the hypotheses that (1) the ability to oxidize phenolics is absent in phytophagous marine isopods, but present in saprophagous marine and semi-terrestrial species, (2) the ability to digest cellulose was an important pre-adaptation facilitating a fully terrestrial life-style in isopods, and (3) endosymbiotic bacteria in the hepatopancreas aid digestion in terrestrial isopods, and to a lesser degree in semi-terrestrial species, but not in marine isopods.  相似文献   

9.
Exposure to lead (Pb) is implicated in a plethora of health threats in both adults and children. Increased exposure levels are associated with oxidative stress in the blood of workers exposed at occupational levels. However, it is not known whether lower Pb exposure levels are related to a shift toward a more oxidized state. To assess the association between blood lead level (BLL) and glutathione (GSH) redox biomarkers in a population of healthy adults, BLL and four GSH markers (GSH, GSSG, GSH/GSSG ratio and redox potential E h ) were measured in the blood of a cross-sectional cohort of 282 avid seafood-eating healthy adults living on Long Island (NY). Additionally, blood levels of two other metals known to affect GSH redox status, selenium (Se) and mercury (Hg), and omega-3 index were tested for effect modification. Regression models were further adjusted for demographic and smoking status. Increasing exposure to Pb, measured in blood, was not associated with GSSG, but was associated with lower levels of GSH/GSSG ratio and more positive GSH redox potential E h , driven by its association with GSH. No effect modification was observed in analyses stratified by Hg, Se, omega-3 index, sex, age, or smoking. Blood Pb is associated with lower levels of GSH and the GSH/GSSG ratio in this cross-sectional study of healthy adults.  相似文献   

10.
Summary A sample of one-year-old seedlings of European white birch (Betula pendula) was analyzed to determine the content of sugars, phenolics and terpenoid compounds. Two vertical segments of each seedling were analyzed separately. The number of resin droplets, which correlates strongly and negatively with feeding by the mountain hare, was also counted on the bark of experimental seedlings. The variation in the palatability of birch seedlings to mountain hare was determined primarily by the most abundant terpenoid, papyriferic acid. On the other hand, the resistance to hare feeding at the seedling bases, which are frequently attacked by voles, appeared to be dependent on other components, apparently phenolic substances. Sugars did not affect the resistance of the tested seedlings. The variation among experimental seedlings was much greater for secondary substances, especially terpenoid compounds, than for sugars. It is suggested that this high variation in protective compounds may be an adaptive trait selected for by the feeding of generalist herbivores.  相似文献   

11.
The principal objective of the study was to characterize effects of increasing density of the autumnal moth, Epirrita autumnata (Lepidoptera, Geometridae), for 3 successive years on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii). During the three study years (2000–2002), the larval density varied from low to very high (outbreak) density. Samples of leaves were collected from the same 12 trees at the same phenological stage of the trees each year. The leaves were collected from undamaged trees in the first year, from trees slightly damaged by larvae in the second year, and from trees heavily damaged by larvae in the third year. Metabolome analysis showed that the increase in density of E. autumnata larvae and degree of damage of birch trees caused multiple biochemical changes in the leaves, including increased concentrations of phenolic compounds (proanthocyanidins and hydrolysable tannins) and reduced concentrations of nutritive metabolites (monosaccharides, amino acids and some organic acids). These changes reduced the quality of leaves as food for larvae and, probably, were associated with induced chemical resistance of the birches to herbivorous insects. Additionally, the concentration of α-tocopherol was significantly higher in both slightly and heavily damaged trees. Mechanisms of changes in the metabolism of phenolic compounds and carbohydrates, and the role of α-tocopherol in their regulation are discussed.  相似文献   

12.
Polygonum cuspidatum Sieb. and Zucc., a traditional Chinese medicine is now a wide-spread invasive neophyte in Europe and America. The novel weapon hypothesis states that some invasive weed species owe part of their success as invaders to allelopathy mediated by some allelochemicals. Previous HPLC/UV/ESI-MS analysis showed that the constituents of the roots of P. cuspidatum from China were obviously different from the species collected in Switzerland (present as an invasive neophyte) with respect to piceatannol glucoside, resveratroloside and some proanthocyanidin. This work isolated these special constituents from the invasive plant and studied their allelopathy effect, as well as the related structures by the seedling and growing model of Lepidium sativum (garden cress, Brassicaceae). The results revealed that stilbenes as piceatannol glucoside, resveratroloside and proanthocyanidins as catechin, epicatechin from this plant were comparatively stronger allelochemicals than the reported allelochemical (−)-catechin, which may partly explain the invasive behavior of this plant in Europe.  相似文献   

13.
Summary The palatability of plants was studied in young, immature and adult geese of three species,Anser anser, Anser indicus andBranta canadensis, with respect to secondary plant metabolites. In their first 1–4 weeks of life, hand-reared goslings feed on a wide variety of plants, more or less irrespective of their allelochemical contents. Older birds become more selective, but still consume plants which are normally considered to be unpalatable or even toxic for other animals. Choice experiments were performed with pure secondary metabolites which were offered on otherwise highly palatable food items, such as leaves ofTaraxacum officinale. These experiments revealed a similar trend, in that very young goslings discriminate their food much less than older goslings or adult geese. In general, food contaminated with essential oils was rejected, whereas alkaloids, glycosides, amines and sulfur compounds were tolerated to a remarkable degree. In consequence, especially young, but also adult geese must have a high capacity to tolerate and/or to detoxify dietary allelochemicals. Another detoxification mechanism became evident during the experiments: geese ingest soil and mud quite regularly. It could be shown experimentally that the respective soil had a high capacity to bind alkaloids. We assume that geophagy is a means (besides a presumed active detoxification in the liver) to adsorb and thus reduce the contents of dietary allelochemicals.  相似文献   

14.
Merostachys riedeliana Rupr. is a native and overabundant bamboo species in the Brazilian Atlantic Forest. Moderate to strong allelopathic activity may be one mechanism that explains this super-dominance and the changes in structure and composition of forest areas occupied by bamboo. This study evaluated the phytotoxic effect of M. riedeliana extracts and fractions and identified their putative allelochemicals. We investigated the presence of allelochemicals in soil collected from stands occupied by M. riedeliana. Furthermore, we evaluated the putative effect of tree allelochemicals, individually and combined, on germination and growth. The aqueous extract of leaves and its ethyl acetate fraction presented the highest inhibitory effects on seed germination and seedling growth. The effect of the extracts and fractions on the target species was species-specific. Neither the individual nor the combined phenolic acids significantly inhibited seed germination; however, a pronounced growth inhibition was observed in M. bimucronata seedlings treated with vanillic acid and in E. verna and M. bimucronata seedlings treated with combined phenolic acids. Isovitexin, vitexin, isoorientin, orientin, and their O-glycoside derivatives, the lactonic dimer of the p-hydroxybenzoic acid and 3,4-methylenedioxymandelic acid were identified in the aqueous extracts and ethyl acetate fraction by Liquid Chromatography-Diode Array Dectector/Electrospray Ionization/Mass Spectrometry (LC-DAD/ESI–MS/MS). The Gas Chromatography-Mass Spectrometer (GC–MS) profile of the same extract and fraction showed the presence of benzoic, benzeneacetic, salicylic, p-hydroxybenzoic, p-hydroxyphenylacetic, vanillic, p-coumaric, protocatechuic, syringic, gallic, m-coumaric vanillylmandelic, 4-methylmandelic, 3,4-methylenedioxymandelic and trans-ferulic acids. The p-benzoic acid and the apigenin 6-C-glucoside (isovitexin) were identified in the soil extract collected from under bamboo-growing areas. Even though laboratory bioassays are not completely predictive of the allelopathic effects that occur in nature, the results of this study provide preliminary evidence of allelopathy as a possible species-specific inhibition mechanism of native species that explain the impoverishment of floristic richness and the functional groups in areas where M. riedeliana is overabundant.  相似文献   

15.
This study aims to identify effective antialgal allelochemicals from marine macroalgae that inhibit the growth of red tide microalgae. Practically, new algicidal agents were developed to control red tide. The growth inhibitory effects of 5 marine macroalgae Porphyra tenera, Laminaria japonica, Ulva pertusa, Enteromorpha clathrata, and Undaria pinnatifida on Skeletonema costatum were evaluated by adding crude seawater extracts of macroalgal dry tissue into the culture medium containing S. costatum. The half-effective concentrations at 120 h (EC50, 120 h) of the seawater extracts were 0.6, 0.9, 1.0, 1.0, and 4.7 g/L for the five macroalgae above, respectively. E. clathrata, L. japonica and U. pertusa showed strong allelopathic effect on the growth of S. costatum. There have been no previous reports with regard to the allelopathic effects of the former two macroalgae so far. The possible allelochemicals of 21 compounds of the E. clathrata were detected using Gas chromatography-mass spectrometry (GC-MS) analysis. Unsaturated fatty acids, acrylic acid (C3H4O2), and linolenic acid (C18H30O2) were the most likely allelochemicals in E. clathrata.  相似文献   

16.
Summary. The quality of tree leaves as food for herbivores changes rapidly especially during the spring and early summer. However, whether the quality of an individual tree in relation to other trees in the population changes during the growing season and between years is less clear. We studied the seasonal and annual stability of chemical and physical traits affecting leaf quality for herbivores. Rankings of trees in terms of the contents of two major groups of phenolics in their leaves, hydrolyzable tannins and proanthocyanidins (condensed tannins), were very stable from the early spring to the end of the growing season. There were also strong positive within-season correlations in the levels of some other groups of phenolics in the leaves (kaempferol glycosides, myricetin glycosides and p-coumaroylquinic acid derivatives). The contents of individual sugars and the sum content of protein-bound amino acids showed patterns of seasonal consistency in mature leaves, but not in young developing leaves. The seasonal correlations in leaf water content and toughness were also strongest in mature leaves. The correlations between two years at corresponding times of the growing season were strongly positive for the major groups of phenolics throughout the season, but were more variable for the contents of proteins and some sugars. Leaf toughness and water content showed strong positive correlations in mature leaves. Despite the consistency of tree ranking in terms of leaf phenolics, the relative resistance status of trees may, however, change during a growing season because there was a negative correlation between the content of hydrolyzable tannins (early-season resistance compounds) in leaves early in the season and the content of proanthocyanidins (late-season resistance compounds) late in the season, and vice versa. Thus, assuming that phenolics affect herbivore preference and performance, different plants may suffer damage at different times of the growing season, and the overall variation between trees in the fitness consequences may be low. In addition, the adaptation of herbivorous insects to mountain birch foliage in general, as well as to specific tree individuals, may be constrained by variation in the relative resistance status of the trees.  相似文献   

17.
Delphastus catalinae (Horn) is a predatory ladybird beetle (Coccinellidae) commonly used as a biocontrol agent against greenhouse infestation by whiteflies. It belongs to the basal subfamily Microweisinae, a group for which chemical defenses have not been previously investigated. The larval and pupal stages of D. catalinae possess minute secretory hairs that produce droplets containing compounds of both isoprenoid and polyketide origin. Bioassays with the predatory ant Crematogaster lineolata showed both the larval and pupal secretions to be deterrent. Moreover, isolated secretion components, from both classes of compounds, displayed antipredator activity against the ant. Experiments with D. catalinae larvae fed isotopically labeled glucose showed 13C-incorporation into both categories of compounds within the pupal secretion, demonstrating that these antipredator compounds, which differ from the typical nitrogenous defensive molecules of coccinellids, are biosynthesized endogenously. This suggests that the wide use of alkaloids by more derived coccinellids may have arisen after their divergence from the more basal Microweisinae.  相似文献   

18.
Larvae of the moth Cydalima perspectalis are specialized on box trees (Buxus spp.). Native to eastern Asia, the moth has been introduced to Europe in 2007 and is nowadays causing severe damage to box trees in private and public gardens, as well as in semi-natural box tree forests. Box trees contain highly toxic triterpenoid alkaloids which may be sequestered by specialized herbivores such as C. perspectalis. We determined the alkaloid composition in leaves of the five most common box tree varieties in Europe belonging to two Buxus species using liquid chromatography–mass spectrometry (LC–MS) metabolite profiling. We also examined whether larvae and moths of C. perspectalis accumulate alkaloids from the different box tree varieties. The differences in alkaloid composition observed between the box tree species Buxus sempervirens and Buxus microphylla were mirrored in the tissue of C. perspectalis larvae fed on either of the different box tree species, indicating uptake of alkaloids. The larvae stored large amounts of dibasic alkaloids in their body, while monobasic alkaloids were metabolized and/or excreted. Newly emerged adult moths contained no traces of alkaloids.  相似文献   

19.
Herbivores tend to increase feeding rate and fitness when consuming a mixed diet relative to a single diet. According to the detoxification limitation hypothesis (DLH), feeding choices and rates when confronted with chemically rich plants are determined by herbivore physiology, and specifically by the metabolic pathways that herbivores use to manipulate secondary metabolites. We tested two predictions of the DLH using two generalist herbivores, the urchin Arbacia punctulata and amphipod Ampithoe longimana. These herbivores have geographic ranges which overlap with brown seaweeds that produce diterpenes (Dictyota menstrualis, D. ciliolata) and a green seaweed that produces sesquiterpenes and diterpenes (Caulerpa sertularioides). As predicted by the DLH, herbivore consumption rates in no-choice feeding assays were limited by extract intake rates. This suggests an upper limit in the herbivores’ abilities to physiologically manipulate seaweed metabolites. Contrary to a second prediction of the DLH, urchins consumed equal amounts of foods coated with limiting concentrations of two seaweed extracts offered singly, as a mixture, or as a pairwise choice. This result suggests that secondary metabolites of these seaweeds are manipulated by a linked set of detoxification pathways. Improving our understanding of the mechanisms that underlie diet mixing depends on greater attention to the physiology of herbivore resistance to secondary metabolites.  相似文献   

20.
Plant secondary chemistry mediates the ability of herbivores to locate, accept and survive on potential host plants. We examined the relationship between attack by the cerambycid beetle Phoracantha solida and the chemistry of the secondary phloem (inner bark) of two differentially attacked plantation forestry taxa, Corymbia variegata and its hybrid with C. torelliana. We hypothesised that this differential rate of attack may have to do with differences in secondary chemistry between the taxa. We found differences in the bark chemistry of the taxa, both with respect to phenolic compounds and terpenoids. We could detect no difference between bored and non-bored C. variegata trees (the less preferred, but co-evolved host). Hybrid trees were not different in levels of total polyphenols, flavanols or terpenes according to attack status, but acetone extracts were significantly different between bored and non-bored trees. We propose that variations in the bark chemistry explain the differential attack rate between C. variegata and the hybrid hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号