首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a lack of information on arsenic metabolism in children exposed chronically to low levels of arsenic (<50 µg L?1). The objective of this study was to determine the methylation profile of urinary arsenic metabolites in children exposed to low-level concentrations of arsenic via their drinking water. A cross-sectional study was undertaken in 50 children from four towns in the Yaqui Valley, Sonora, with total arsenic values of 39.9, 16.8, 7.3, and 5.5 µg L?1 in their drinking water, respectively. First morning void samples were analyzed for inorganic-As (InAs), mono and dimethyl arsenic (MMA and DMA). The total arsenic excreted in urine ranged from 23.1 to 99.1 µg L?1 and these levels did not vary by sex. Children with the highest level of total arsenic in their drinking water excreted the highest amount in urine and the length of residence and age also had significant contribution. Children with a lower range of arsenic exposure (16.8–5.5 µg L?1) had similar amounts of arsenic in urine with values of 23.1, 28.2, and 32.6 µg L?1, respectively. DMA had the highest proportion in urine (52.1–74.7%), followed by InAs (16.3–34.9%) and MMA (4.4–8.4%). Compared to other reports, these children excreted a low %MMA (6.1%), and children from the towns with the lowest levels of arsenic had the highest %InAs and the lowest %DMA. This variability in arsenic methylation was partially explained by arsenic concentration in drinking water, years of residence and age, and may reflect genetic differences or more contribution from different exposure routes. In conclusion, our results show that at low levels of exposure the children's ability to metabolize InAs did not have a linear association with the levels of arsenic, and overall children from the Yaqui Valley excrete a lower %MMA than expected.  相似文献   

2.
The presence of organochlorine compounds (OC) such as DDT and their metabolites in the environment have created a significant environmental concern over the years due to adverse effects. Consequently, DDT has been banned in many countries. However, it is still used in some countries including South Africa, particularly for vector-borne disease eradication programmes. Since the presence of DDT and its metabolites may provide an indication of the general exposure and use of these compounds, there was a need for such a study. Human breast milk samples (n = 30) were collected from mothers within the age range of 19–40 years from the Thohoyandou area, South Africa. The liquid–liquid extraction method was used to extract DDT and its metabolites from the samples. The crude extracts were subjected to column chromatography for measurements of OC levels. The concentration ranges of the contaminants were as follows: not detected (ND) to1770 ng g?1 (2,4′-DDE); ND to 3977 ng g?1 (4,4′-DDE); ND to 3250 ng g?1 (2,4′-DDD); ND to 2580 ng g?1 (4,4′-DDD) and ND to 2847 ng g?1 (4,4′-DDT). The mean ΣDDE, ΣDDD and ΣDDT obtained from the villages were 1180 ng g?1, 830 ng g?1 and 690 ng g?1, respectively. The total DDT ranged from 820–7473 ng g?1. The estimated daily intake varied from 260 to 4696 ng g?1, ND-10551 ng g?1 and ND-4237 ng g?1 for DDE, DDD and DDT, respectively. These values are significantly higher than the FAO/WHO acceptable daily intake (ADI) of 20 ng g?1. The ΣDDT was found to decrease with increasing age of the mothers. The observed high levels of DDE compared to DDT indicated chronic exposure of the mothers to DDT, which is metabolized to DDE and retained in the body.  相似文献   

3.
使用离子色谱(IC)-电感耦合等离子体质谱(ICP-MS)联用技术对水中砷的形态进行分离检测,对流动相、进样量和流速等条件进行了研究。使用IonpacAS18阴离子色谱柱,NH4HCO3作为淋洗液,1.0mL·min-1流速,成功的进行砷形态分离,该方法在100μL进样量下,4种砷形态(三价砷(As(III))、五价砷(As(V))、一甲基砷(MMA)和二甲基砷(DMA))的方法检出限在10~30ng·L-1之间,方法回收率为82.6%~110%,相对标准偏差(n=6)为2.2%~10.9%。  相似文献   

4.
Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MAV) and dimethylarsinic acid (DMAV). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l?1 As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l?1 As. The pH range for the provinces of San Juan (7.2–9.7) and La Pampa (7.0–9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm?1) and TDS (>1,400 mg l?1). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216–224 μg l?1 As to 0.3–0.8 μg l?1 As. Arsenic species for both provinces were predominantly AsIII and AsV. AsIII and AsV concentrations in San Juan ranged from 4–138 μg l?1 to <0.02–22 μg l?1 for surface waters (in the San José de Jáchal region) and 23–346 μg l?1 and 0.04–76 μg l?1 for groundwater, respectively. This translates to a relative AsIII abundance of 69–100% of the total arsenic in surface waters and 32–100% in groundwater. This is unexpected because it is typically thought that in oxidising conditions (surface waters), the dominant arsenic species is AsV. However, data from the SPE methodology suggests that AsIII is the prevalent species in San Juan, indicating a greater influence from reductive processes. La Pampa groundwater had AsIII and AsV concentrations of 5–1,332 μg l?1 and 0.09–592 μg l?1 for EC and 32–242 μg l?1 and 30–277 μg l?1 As for LU, respectively. Detectable levels of MAV were reported in both provinces up to a concentration of 79 μg l?1 (equating to up to 33% of the total arsenic). Previously published literature has focused primarily on the inorganic arsenic species, however this study highlights the potentially significant concentrations of organoarsenicals present in natural waters. The potential for separating and preserving individual arsenic species in the field to avoid transformation during transport to the laboratory, enabling an accurate assessment of in situ arsenic speciation in water supplies is discussed.  相似文献   

5.
To assess arsenic contaminations and its possible adverse health effects, food samples were collected from Kandal, Kratie and Kampong Cham in Cambodia. The highest and the lowest concentrations were observed in fish (mean 2,832 ng g?1, ww) collected from Kandal province and cattle stomach (1.86 ± 1.10 ng g?1, ww) collected from Kratie, respectively. The daily intake of arsenic via food consumption was 604, 9.70 and 136 μg day?1 in Kandal, Kratie and Kampong Cham, respectively. The arsenic dietary intake in Kandal ranked No. 1 among all the 17 compared countries or regions. Fish consumption contributed the greatest proportion of total arsenic daily intake in Kandal (about 63.0 %) and Kampong Cham (about 69.8 %). It is revealed to be a much more important exposure pathway than drinking water for residents in Kampong Cham. The results of risk assessment suggested that the residents in Cambodia, particularly for people in Kandal province, suffer high public health risks due to consuming arsenic-contaminated food.  相似文献   

6.
Persistent organic pollutants (POPs) were recorded in sediment and fish samples collected from the western coast of Alexandria. Total hydrocarbons (aliphatic+PAHs ) in sediment ranged from 683.8 to 34670.1 ng g ?1 with an average of 9286.9 ng g ?1. The sum of C16–C34 of aliphatic fractions was<4000?ng g;?1, indicating the presence of a fresh petroleum source. For all sediments, the anthracene/phenanthrene ratio was>0.1, suggesting the dominance of a pyrolytic source. Total aliphatics in different fish species ranged from 253 to 11?132 ng g;?1, while total PAHs ranged from 3862 to 35?746 ng g;?1 wet weight. Benzo[a]pyrene was the most dominant PAH fraction ranged from 1902.7 to 32 905.5 with an average of 9464.5?ng g;?1 wet weight in all fish species. Concentrations of polychlorinated biphenyls (PCBs) ranged from 0.79 to 64.9?ng g;?1 with an average 12.14?ng g;?1 wet weight. The concentrations of organochlorines in fish species (Euthynnus alleferatus, Scomberomorus commerson, Sphyraena Sphyraena, Diplodus vulgaris, and Alepes djedaba) decreased following the order: PCBs>DDTs>HCHs>total cyclodienes. Concentrations of DDTs in fish tissues ranged from 4.89 to 36.37 ng g?1 with an average of 16.4?ng g;?1 wet weight. The concentrations of total HCHs ranged from 0.3 to 65.7?ng g;?1 with an average of 16.35?ng g;?1. The present study indicates: (1) fresh petroleum input where Pr/Ph>1; (2) PAHs in sediment<4000 ng g ?1; (3) BaP concentration exceeded the permissible levels in Alepes djedaba species; (4) DDTs in sediment were below the effective range low level; (5) PCBs>effective range low and相似文献   

7.
In marine ecosystems, benthic organisms are really important because they are the first step in the transfer of contaminants from environment to biota. To this end, this study focused on biological assays with the amphipod Corophium orientale exposed to two different molecules of arsenic: arsenate (AsV), the most abundant form in sediments, and dimethyl-arsinate (DMA), expected to be moderately toxic as an intermediate in the process of detoxification. The toxicity of arsenic compounds was measured after exposure to three different matrices: water, spiked natural sediment and inert spiked quartz sand. LC50 values were calculated for each exposure, and the results confirmed the highest toxicity of AsV, in addition to underlining the importance of matrix of exposure. Water exposure was the matrix which presented the highest toxicity for inorganic arsenic (AsV LC50=3.51 mg L?1 vs DMA LC50=54.65 mg L?1), spiked natural sediment demonstrated its capability to chelate arsenate toxicity (AsV LC50=34.27 mg kg?1 vs. DMA LC50=52.19 mg kg?1) and spiked quartz sand presented intermediate values for AsV (LC50=25.26 mg kg?1), whereas for DMA a lower toxicity was registered (LC50=872.35 mg kg?1). This study can provide some useful data linked with chemical speciation of arsenic and exposure matrix, for improving the correct management of contaminated sediment.  相似文献   

8.
The aim of this study was to investigate the potential utility of Allium cepa L. as a bioindicator organism for measuring copper bioaccumulation and toxicity in laboratory conditions. Onions were exposed to increasing concentrations of the metal (0, 0.1, 0.5, 1, 5 and 10 μg mL?1) for 7 days. Root and leaf development were chosen as biological endpoints, while bioaccumulation was evaluated in roots, bulbs and leaves. Copper caused inhibition of root elongation with increasing effects at the higher doses, growth being reduced by almost 60% at 0.1 μg mL?1 and up to 95% at 10 μg mL?1. The elongation of leaves was significantly lower only in specimens exposed at 0.5 μg mL?1, but a total absence of newly formed tissues was observed at 10 μg mL?1. A marked bioaccumulation of copper was measured in roots, with values increasing up to almost four orders of magnitude compared to controls; only slight or even no significant differences were observed for copper levels in leaves and bulbs of treated A. cepa. Multiple linear correlations revealed a significant inverse relationship between copper concentrations and tissue length in both the roots and leaves, evidencing a sensitive responsiveness of this biological model. The overall results suggest the suitability of A. cepa as a robust species for easy and simple ecotoxicological bioassays to test the toxic effects and bioavailability of environmental pollutants, especially trace metals.  相似文献   

9.
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg?1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg?1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg?1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg?1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg?1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.  相似文献   

10.

Background

Since 1990, every 5 years, moss sampling is conducted within the European moss monitoring programme to assess the atmospheric deposition of airborne pollutants. Besides many other countries, Germany takes regularly part at these evaluations. Within the European moss monitoring 2015, more than 400 moss samples across Germany were taken according to a harmonized methodology for the assessment heavy metal and nitrogen input. In a pilot programme, eight of these sites were chosen for additional investigations on a broad range of organic contaminants to evaluate their accumulation in moss and thereby their presence in atmospheric deposition in Germany. Target compound classes comprised polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzodioxins and –furans (PCDD/F), dioxin-like and non-dioxin-like polychlorinated biphenyls (dl-PCB, ndl-PCB), polyfluorinated alkyl substances, classical flame retardants as well as emerging chlorinated and brominated flame retardants. In total, 120 target compounds were analysed. For some analytes, comparisons of accumulation in moss and tree leave samples were possible.

Results

Except for certain flame retardants, PFAS, and ndl-PCB, substances of all other compound classes could be quantified in moss samples of all sites. Concentrations were highest for PAH (40–268 ng g?1) followed by emerging flame retardants (0.5–7.7 ng g?1), polybrominated diphenyl ethers (PBDE; 0.3–3.7 ng g?1), hexabromocyclododecane (HBCD; 0.3–1.2 ng g?1), dl-PCB (0.04–0.4 ng g?1) and PCDD/F (0.008–0.06 ng g?1).

Conclusions

Results show the widespread atmospheric distribution and deposition of organic contaminants across Germany as well as the suitability of moss as bioaccumulation monitor for most of these compound classes. Compared to nearby tree leaf samples, accumulation potential of moss appeared to be higher for pollutants of high octanol–air partition coefficient (KOA) and octanol–water partition coefficient (KOW).
  相似文献   

11.
The effect of organic arsenic compounds and inorganic As(V) and As(III) on Vibrio fischeri luminescence and butyrylcholinesterase activity were evaluated using Microtox and microcalorimetric analysis. Organic arsenic compounds were arsenocholine (AsC), arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and the antibiotic 4-hydroxy-3-nitrobenzene arsonic acid (HNAA, Roxarsone(R)). HNAA, As(III) and As(V) were found to inhibit Vibrio fischeri light emission whereas MMA, DMA, AsC and AsB produced only a slight effect. By contrast, only AsC, AsB and As(III) were found to inhibit butyrylcholinesterase activity. Selected article from the 6th European Meeting on Environmental Chemistry, University of Belgrade, Serbia and Montenegro organized by Prof. Dr. Branimir Jovancicevic (www.research.plymouth.ac.uk/ace).  相似文献   

12.
In this study, the content and speciation of arsenic in coal waste and gas condensates from coal waste fires were investigated, respectively, using the digestion and sequential extraction methods. The fresh and fired-coal waste samples were collected from Yangquan, which is one of the major coal production regions in northern China. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) was used to determine the concentrations of four major arsenic species [As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA)] in the extracts, while ICP-MS was used to measure total As content. Arsenic content in the investigated coal wastes and the condensate ranges between 23.3 and 69.3 mg/kg, which are higher than its reported average content in soils. Arsenic in coal waste exists primarily in the residual fraction; this is followed in decreasing order by the organic matter-bound, Fe–Mn oxides-bound, exchangeable, carbonates-bound, and water-soluble fractions. The high content of arsenic in the condensates indicates that combustion or spontaneous combustion is one of the major ways for arsenic release into the environment from coal waste. About 15% of the arsenic in the condensate sample is labile and can release into the environment under leaching processes. The water extractable arsenic (WEA) in the fresh coal waste, fired coal wastes, and the condensate varied between 14.6 and 341 μg/kg, with As(V) as the major species. Furthermore, both MMA and DMA were found in fresh coal wastes, fired coal wastes, and the condensate.  相似文献   

13.
Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40–25,873.3 mg kg?1, 7.10–1448.80 mg kg?1 and 12–606 μg L?1, respectively, arsenic concentrations in humans’ hair and urine and sheep’s wool and urine varied from 0.37–1.37 μg g?1 and 9–271.4 μg L?1 and 0.3–3.11 μg g?1 and 29.1–1015 μg L?1, respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.  相似文献   

14.
Xijiang River is an important drinking water source in Guangxi Province, China. Along the Xijiang River and surrounding tributary, the pollution profile of three important groups of semi-volatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phthalate esters (PAEs), was analyzed. Relatively low levels of PAHs (64–3.7 × 102 ng L?1) and OCPs (16–70 ng L?1), but high levels of PAEs (7.9 × 102–6.8 × 103 ng L?1) occurred in the water. Comparatively, low levels of OCPs (39–1.8 × 102 ng g?1) and PAEs (21–81 ng g?1), but high levels of PAHs (41–1.1 × 103 ng g?1) were found in sediment. Principal component analyses for source identification indicated petroleum-derived residues or coal and biomass combustion, and vehicular emission was the main sources for PAHs. The OCPs sources of each category were almost independent, whereas the new input of HCHs and p,p′-DDTs probably existed in some areas. PAEs were mainly originated from personal care products of urban sewage, plastic and other industrial sources. Ecological risk through the risk quotient analysis indicated a small or significant potential adverse effect on fish, daphnia and green algae. Nevertheless, the integrated risk of all pollutants should be taken into account in future study.  相似文献   

15.
Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, \( {\text{Hg}}_{\text{gas}}^{0} \) ), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m?3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m?3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m?3. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.  相似文献   

16.
Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83–0.92 for samples collected from the same well 15–25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.  相似文献   

17.
Histamine plays an important pathophysiological role in allergy, inflammation, gastric acid secretion, microcirculation and neurotransmission. 3-Methylhistamine is a prominent metabolite of histamine. Different methods for determination of histamine in biological fluids have been developed. In the present study, a simple, simultaneous determination of histamine and 3-methylhistamine by HPLC (precolumn derivatization with fluorescamine) was developed in human plasma using fluorescence detection with 1-methylhistamine as the internal standard. Linear regression analysis of the ratios of the concentrations of histamine and 3-methylhistamine (X) against peak height ratios (Y) yielded the following: y = 0.0073x ? 0.0096 (R 2 = 0.990) and y = 0.0077x ? 0.0111 (R 2 = 0.989). In conclusion, it was possible to detect histamine and 3-methylhistamine below 5 ng mL?1 in 1 mL plasma.  相似文献   

18.
The extracellular extract obtained from 3 weeks incubation of the soil isolate cyanobacterium strain Nostoc piscinale GT-319 in BG-11 broth medium showed cytotoxic activity against Chinese Hamster Ovary (CHO) cells. Based on comet assay, a concentration of 333 µg mL?1 (IC50) produced DNA breakages in CHO cells. The concentration of 481 mg kg?1 (LD50) produced acute toxicity in mice at 48 h.  相似文献   

19.
Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g?1, 426.98 and 381.20 ng L?1, respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10?4), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.  相似文献   

20.
Polychlorinated benzenes (PCBzs) including penta- and hexachlorobenzene can be unintentionally formed from thermal processes in different industrial activities, and very little information is available on the contamination and emission characteristics of these new persistent organic pollutants from industries in Vietnam. In this study, contamination of PCBzs (including penta- and hexachlorobenzene, named PeCBz and HCB, respectively) and PCBs (including CB-28, 52, 101, 153, 138, 180) in fly ash, bottom ash and soil from combustion processes of waste incineration, metallurgy (steel making and zinc production) and cement production from several provinces in the Northern Vietnam, including Hai Duong, Hanoi, Bac Ninh, Hai Phong and Thai Nguyen, was preliminary investigated. The PCBzs concentrations in fly ash, bottom ash and soil ranged from 2.7 to 100 ng g?1, from 2.7 to 159 ng g?1 and from 0.28 to 33.9 ng g?1, respectively. Relatively high residues of PeCBz in fly ash and bottom ash from municipal waste incinerators in some provinces from the Northern Vietnam were encountered. Total PCBs concentrations ranged from 18.0 to 8260 ng g?1, from 1.0 to 10600 ng g?1 and from 14.5 to 130 ng g?1 for the fly ash, bottom ash and soil, respectively. Daily intakes of PeCBz, HCB and PCBs through soil ingestion and dermal exposure estimated for children ranged 0.33–9.93 (mean 3.14), 0.39–21.1 (mean 4.9) and 6.09–1530 ng/kg bw/day (mean 346), respectively; and these intakes were about 4.7–5.4 times higher than those estimated for adult. The intakes of PeCBz and HCB were relatively low, while those for PCBs exceeded WHO TDI for some samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号