首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Rates of shoreline change along the coast of Bangladesh   总被引:1,自引:0,他引:1  
Bangladesh, at the confluence of the sediment-laden Ganges and Brahmaputra Rivers, supports an enormous and rapidly growing population (>140 million in 2011), across low-lying alluvial and delta plains that have accumulated over the past few thousand years. It has been identified as one of the most vulnerable places in the world to the impacts of climate change and sea-level rise. Although abundant sediment supply has resulted in accretion on some parts of the coast of Bangladesh, others are experiencing rapid erosion. We report a systematic assessment of rates of shoreline change over a 20-year period from 1989 to 2009, using Landsat satellite images with pixel resolution of 30 m on the ground. A Band ratio approach, using Band-5 divided by Band-2, discriminated the water line on images that were largely cloud-free, adequately registered, and at comparable tidal stages. Rates of shoreline change were calculated for >16,000 transects generated at 50 m intervals along the entire mainland coastline (>1,100 km) and major islands, using the End Point Rate (EPR) method in the Digital Shoreline Analysis System (DSAS) extension in ArcGIS®. Erosion characterises most of the seaward margin of the Sundarbans in western Bangladesh. Retreat rates of up to 20 m/yr are typical, with little evidence that local devastation of the mangrove fringe by Cyclone Sidr in November 2007 had resulted in uncharacteristic long-term rates of retreat where it made landfall. Erosion exceeded accretion in the Barguna Patuakhali coastal zone, most of which eroded at up to 20 m/yr, but with truncation of the southern tip of the Patharghata Upazila at up to 100 m/yr. In Bhola, erosion at rates of up to 120 m/yr were observed along much of the coast, but in the Noakhali Feni coastal zone, similar rates of erosion were balanced by rapid accretion of the main promontory by more than 600 m/yr. Rates of change were more subdued in the Chittagong and Cox’s Bazar coastal zones of southeast Bangladesh. Islands in the Meghna estuary were especially dynamic; Hatiya Island accreted along some of its shoreline by 50 km2 between 1989 and 2009, but lost 65 km2 through erosion elsewhere, resulting in the island moving south. Similar trends were observed on adjacent islands. The overall area changed relatively little across the entire coastline over the 20-year period with accretion of up to 315 km2, countered by erosion of about 307 km2.  相似文献   

2.
Automatic detection of shoreline change: case of North Sinai coast,Egypt   总被引:1,自引:0,他引:1  
This paper introduces an appropriate visualization of how to effectively digitize, quantify and predict shoreline kinematics changes. The method relies mainly on the coupling of Geographic Information System (GIS) with Digital Shoreline Analysis System (DSAS). The North Sinai coast in Egypt is selected as a case study. The proposed technique is applied over a quarter-centennial period of 27 years (1989–2016). However, the years 2025, 2035, and 2050 are used for prediction purpose. Histogram threshold of band 5, Histogram threshold of band ratio, and Tasselled Cap Transformation (TCT) are initially tempted as semi-automatic shoreline extraction techniques for Landsat ETM 2010 imagery. Among of them, the TCT is found superior as a digitizing technique that attains the least normalized root mean square errors with the corresponding field data in 2010. Meanwhile, the shoreline change rates in the form of erosion/accretion patterns are automatically quantified by four statistical parameters functioned in DSAS coding. Those, namely end point rate (EPR), net shoreline movement (NSM), linear regression rate (LRR), and least median of squares (LMS). On the basis of the LRR and EPR results, this study offers to the coastal managers a highly reliable decision-support-algorism that can dynamically assist in elaborating strategies to curtail the non-affirmative consequences due to the erosion/accretion of the shoreline.  相似文献   

3.
Analyses have been undertaken to examine shoreline positions established from remote sensing data along the northwestern part of the Nile delta from the Abu Qir Bay to Gamasa embayment (∼143 km length). The image data used (MSS, TM and ETM+ sensors) are acquired at unequal intervals between 1972 and 2006, i.e., covering a time span of 34 years. Automated waterline positions extracted from Landsat satellite images during this period of time were computer generated. A digital shoreline analysis software was used to calculate the annual rate of beach changes at 1,432 cross-shore transects prior to (1972–1990) and after protection (1993–2006). On comparison, rates estimated from three statistical approaches (the end point rate, the Jackknife and a weighted linear regression) at corresponding positions are successfully validated with those measured from ground survey. Before protection, results reveal longshore patterns wherein erosion along a coastal stretch gives way to accretion in an adjacent stretch, refining the sub-cells previously identified within the littoral system of the delta. Maximum shoreline retreat occurs along the Rosetta promontory (−138.52 m/year) and along the central bulge of the delta at Burullus headland (−6.07 m/year). In contrast areas of shoreline accretion exist within saddles or embayments between the promontories at west Abu Qir Bay (20.04 m/year), Abu Khashaba saddle (16.17 m/year) and Gamasa embayment (20.68 m/year). These rates of changes have been significantly altered by the construction of intensive shoreline protective structures built from 1990 to combat areas of rapid erosion at both the Rosetta promontory and Burullus–Baltim headland, ∼15-km length in total.  相似文献   

4.
Coastal zones experience increased rates of coastal erosion, due to rising sea levels, increased storm surge frequencies, reduced sediment delivery and anthropogenic transformations. Yet, coastal zones host ecosystems that provide associated services which, therefore, may be lost due to coastal erosion. In this paper we assess to what extent past and future coastal erosion patterns lead to losses in land cover types and associated ecosystem service values. Hence, historical (based on CORINE land cover information) and projected (based on Dynamic and Interactive Vulnerability Assessment - DIVA - simulations) coastal erosion patterns are used in combination with a benefits transfer approach. DIVA projections are based on regionalized IPCC scenarios. Relative to the period 1975–2050, a case study is provided for selected European coastal country member states. For historical (1975–2006) coastal erosion trends, we observe territory losses in coastal agricultural, water body and forest & semi-natural areas – total coastal erosion equaling over 4,500 km2. Corresponding coastal ecosystem service values decrease from about €22.3 billion per year in 1975 to about €21.6 billion per year in 2006. For future (2006–2050) coastal erosion projections, total territory losses equal between ~3,700 km2 and ~5,800 km2 – coastal wetland areas being affected most severely. Corresponding coastal ecosystem service values decrease to between €20.1 and €19.4 billion per year by 2050. Hence, we argue that the response strategy of EU member states to deal with coastal erosion and climate change impacts should be based on the economic as well as the ecological importance of their coastal zones.  相似文献   

5.
The Mediterranean basin has undergone widespread land cover change. Urbanization of coastal areas, land abandonment of steeper slopes, and agricultural intensification in alluvial plains are recurrent themes. The objective of this study was to examine how vineyard land cover changes have affected agricultural soil erosion in a 50 year period (1950–2011). The study area covers a 235 km2 catchment located near the Gulf of St Tropez. Aerial photographs were used to map land cover in 1950, 1982, 2003 and 2011, and the RUSLE soil erosion model was run to estimate soil erosion.

Between 1950 and 2011, vineyard went from about 2,426 ha to 1,561 ha. Mean soil erosion increased as vineyard slopes became steeper (11.8 T ha?1, 13.2 T ha?1, 14.4 T ha?1 and 13.5 T ha?1 for 1950, 1982, 2003 and 2011). Total erosion decreased after 1982: 28,621 T y?1 in 1950, 29,030 T y?1 in 1982, 22,848 T y?1 in 2003, and 21,074 T y?1 in 2011. Total soil loss in 2011 is about 75% of values in 1950–1982, so impacts on water pollution and channel dredging have evolved positively over time.  相似文献   

6.
Traditionally the coastal zone of the easternmost (Russian) part of the Gulf of Finland has not been considered as an area of active litho- and morphodynamics, but a recent study has shown that the easternmost part of the coastal zone suffers from erosion. Within some coastal segments the shoreline recession rate reaches 2 ?C 2.5?m/year. As well as determining the hydrodynamic reasons for recent erosion acceleration, important geological and geomorphic features of coastal zone which influenced the lithodynamics were established. The Kurortny District of St.Petersburg is located along the northern coast of the Gulf of Finland to the west of the St. Petersburg Flood Protection Facility. It has special importance as a unique recreation zone of the North-West of Russia. Coastal erosion is one of the most serious problems of the area. The analysis of historical materials, archive aerial photographs and modern high-resolution satellite images have shown that advancing parts of coast are almost non-existant with most sections of the coast being eroded and further retreating. Field monitoring between 2004 and 2007 showed intense damage to sandy beaches during autumn and winter storms and progressive erosion of the dunes system. Among the most important natural reasons for the erosion processes are that the coastline is open to storm waves induced by westerly and south-westerly winds, the geological structure of coastal area (easily eroded Quaternary deposits) and a sediment deficit. In some areas sediment loss was the result of the submarine coastal slope morphology (a steep slope of a narrow submarine terrace within the area of sediment drift discharge), with erosion of an alongshore submarine sandy terrace and erosion runnels at the depth 8?C12?m. The situation becomes worse due to anthropogenic impact. The southern coastal zone dynamics are also very active. According to an aerial and satellite photos analysis from 1975?C1976 to 1989?C1990, sandy beaches to the west of Lebyazhye village were eroded up to 30?m, and near Bolshaya Izora village up to 70?m. The comparison of coastine GPSsurvey with old nautical and topographic charts published in the 1980s shows the considerable change.  相似文献   

7.
Drastic changes in river discharge and salinity levels are threatening the phenology and morphology of the coastal mangrove forests of the Sundarbans of Bangladesh. We have used AVHRR GIMMS (1985–2006) and MODIS (2005–2010) satellite Normalized Difference Vegetation Index (NDVI) data to identify the temporal variation of the phenology of the mangroves. Linear interpolation and Fourier-based adjustment were applied to remove noise from the NDVI time series. Then linear regression analysis on a single area (8 km ? 8 km) and a composite of 36 areas for three NDVI statistics the annual minimum, annual average, and annual maximum were performed--over the time periods 1985–1990, 1990–2000, 2000–2006 and 2005–2010 to identify possible functional changes in NDVI time series around the Sundarbans. Furthermore, we used fourteen LANDSAT images spanning the period 1989–2010 to estimate the spatiotemporal rate of shoreline changes over the three time periods 1989–2000, 2000–2006, and 2006–2010. A decreasing trend in the annual minimum NDVI was observed in most of the areas of the Sundarbans for the period 1990–2000. During the years 2000–2006, the trends of the three NDVI statistics became significantly positive, indicating an improvement of the mangrove phenology. In the period 2005–2010, a decreasing trend in all the NDVI variables was again dominant. The coast underwent rapid erosion from 1989–2000 and 2006–2010. However, the rate substantially declined between 2000 and 2006, when accretion was dominant. The advent of the upstream Farakka barrage caused a significant reduction in the Ganges-Gorai River discharge and increased the salinity in and around the Sundarbans. Our study concludes that this may be responsible for the degradation of mangrove phenology and accelerated erosion in the earlier and recent periods. In the interim, 2000–2006, improved river discharge and salinity levels due to the Ganges water sharing agreement (1996) and dredging of the Gorai River bed (1998–1999) enhanced the mangrove phenology and helped the coast to gain land.  相似文献   

8.
Coastal zone is often vulnerable to natural hazards such as cyclones, storm surges, tsunamis, erosion, accretion, and coastal flooding; and man-made hazards like ports, jetties, seawalls, breakwaters, and groins. These disasters are frequently affecting the shorelines, beaches, and headlands that lead to loss of human life, properties, and natural ecosystems. To prevent further loss in the coastal zone and to conserve the existing natural resources, it is important to map and monitor vulnerable shorelines at frequent time intervals. The current study, conducted over the Northern TN (Tamil Nadu) coast of India, is highly dynamic due to its nature of coast and shoreline changes. The temporal remote sensing data and Survey of India (SOI) topographic maps over the period of 40 years (i.e., 1976–2016) were used to capture shorelines and then the erosion and accretion from the shorelines were assessed by performing the overlay analysis. These geospatial datasets of shorelines were incorporated into WebGIS platform, which was developed and demonstrated using open source software. This latest WebGIS technology allows users to store a large volume of geospatial datasets in the server and access through internet with a web browser that lead to manipulation, visualization, interaction, and dissemination. The results revealed that there were 61 layers, which include district-wise shorelines, erosion, and accretion for Tiruvallur, Chennai, and Kanchipuram. These geospatial datasets in WebGIS showed that the dynamism on the morphological structure of the shorelines, over the Northern TN lost 1,925 ha and gained 1,578 ha due to erosion and accretion, respectively. It is reported that in this study spatial reduction in the coastline may be attributed to natural and anthropogenic activities. However, this research will be useful for various stakeholders, including coastal management authorities to formulate policies and to regulate the coastal development activities.  相似文献   

9.
The area of Cabedelo sand spit, located at the mouth of Douro River estuary (Porto, Portugal), reduced in recent decades. In order to study its evolution and also the impact of two breakwaters built to fix the river entrance, a dataset from 23 trimestral surveys using differential GPS techniques, conducted between 2001 and 2007, were considered. A time-series analysis and the estimation of relationships between Cabedelo spit area and several hydrodynamic parameters through statistical techniques were performed in order to determine which parameters have more influence in the Cabedelo spit behavior. From the time-series analysis a seasonal tendency is visible, with the lower values occurring in December and the higher values occurring in July. The estimation of a relationship between Cabedelo spit area and several independent variables reached better results when the dataset was divided in Part A (before the beginning of breakwaters construction) and Part B (during the breakwaters construction). An analysis of the morphological evolution of Cabedelo spit shoreline was also performed: (1) a simple analysis of retreat and accretion rates data with a geographical information system and (2) a more exhaustive analysis were performed using Empirical Orthogonal Functions (EOFs). The Cabedelo spit shoreline erosion occurs mostly on the West and North side, and the accretion mostly occurs in the area protected by the South breakwater. During the breakwater’s construction, the Cabedelo spit shoreline presented high retreat rates, with a mean value greater than 100 m. In terms of spatial variance (EOFs analysis), when the dataset was divided in two parts, the first Principal Component (PC) represents 60.10 % and 89.86 % of the mean squared value of the data, for Part A and Part B, respectively. As proved, the breakwaters would tend to stabilize the coastline leading to a higher first PC value after breakwaters construction (Part B).  相似文献   

10.
The interface between the sea and land is a very dynamic system that is always migrating landward or seaward. The landward migration results in the shoreline threatening coastal infrastructure and destroying the coastal environment. Coastal erosion has resulted in both social and economic problems. Coastal cities have also experienced increasing infrastructure development and population growth. This has resulted in a land “squeeze situation” in which both the shoreline and the “humanline” are competing for space along the coast. This struggle for space could result in serious environmental disaster as a result of the dynamics of the oceanic system, which could impact the immediate environs severely. The aim of this study was to determine if the rate of human encroachment of coastal lands for development exceed the rate at which the shoreline is moving inland as part of its natural cyclic behaviour. This study used 1985 aerial photographs and 2005 orthophoto map of the Accra western coast. Major land cover was identified, classified and overlayed in GIS environment. This enabled changes to be estimated. The shorelines were also digitised and the rate of change computed using the DSAS software. The results indicate that the estimated total area of land lost by human encroachment on the coastal land within the period under study is about 242,139.7 m2. However, the rate of land lost to human development is about 8,349.64 m2/year, which is relatively high. The historic rate of erosion computed for the period under study is about 1.92 m/year. Comparing the two rates indicates that human activities are moving closer to the shoreline as compared to the rate at which the shoreline is moving inland. This study recommends that setback lines should be put in place to protect lands for the shoreline’s cyclic activities.  相似文献   

11.
Anthropic pressure has caused severe variations of Mediterranean coastal areas currently hosting about 480 million people. The replacement of natural land covers with crops and urban environment coupled with the reduction of sediment supply to the coast, subsidence, Relative Sea Level Rise and the high frequency of storm events, have caused severe shoreline erosion. In this paper, we stress the key role of historical maps, topographic maps and free satellite images to forecast the rates of coastline changes and to recognize the main features of past landscapes as tools for risk reduction. This data was recorded into a Geographical Information System dedicated to coastal management that allows to compare different coastal zones and elaborate maps. The analysis was applied to the case study of Volturno Coastal Plain (VCP), extending from the town of Mondragone to Patria Lake (Campania Region, Southern Italy). Indeed, the intense territorial modification that occurred between the seventies and eighties, coupled with the exposure to coastal erosion, make the VCP a good test area. The spatial analysis algorithms allowed to outline the main features of past landscapes and how they changed from roman times to present while the coastal evolution (erosion, accretion) and possible future coastal trend was assessed with the Digital Shoreline Analysis System (DSAS) software. Starting from the Bourbon domain, the reclamation caused the first great territorial change (e.g. wetlands were transformed into agricultural lands, regimentation of surperficial water) but the negative effects of antrophic pressure, as the intense urbanization of the coastal belt, emerged in the seventies of the last century. The shoreline position was defined for 9 time intervals (from 1817 to 2012) as the ratio of the distance between two shorelines and the relative elapsed time. Moreover, for the 1957–1998 and 1998–2012 time windows, the shoreline trends were calculated with the weighted linear regression method. The first trend pointed out an intensive erosional phase (mean value: 5 m/yr) for a wide sector close to the Volturno River mouth, the eroded sediment nourished the beaches of other coastal sectors. This phase was related to the reduction of River sediment supply mainly due to the construction of the Ponte Annibale dam on the Volturno River. The second (1998–2012) showed an alternation of erosion and accretion sectors due to a sediment starved condition to deltaic zone and to a sequence of 52 sea protection works in the Gaeta Gulf. Furthermore, the regression values of more recent time interval, was assumed as a scenario to draw the probable shoreline position in 2022. The overlay of this shoreline on the Technical Maps of Campania Region at 1:5000 scale highlighted the urban area that could be exposed to damages.  相似文献   

12.
Studies about wetlands have been identified as a key component of environmental change. The present study assesses the spatio-temporal changes in the wetlands of the Great Rann of Kachchh, in the Kachchh Biosphere Reserve, India, using remote sensing and GIS techniques. Satellite time-series data from Landsat (1977, 1990 and 1999) and IRS P6 (2006, 2008–2012) were used. The Normalised Difference Water Index (NDWI) was derived for each year and the layers were manually edited to obtain a high classification accuracy. The analysis found that the area has undergone considerable change from 1977 to 2011. The natural wetland area of 30.6 km2 was converted to salt pans. An area of about 255 km2 (41.6 %) of natural grassland was invaded by Prosopis juliflora, which raises further conservation concerns and emphasises the importance of having intervention plans to manage this ecosystem. The highest water spread of 1171 km2 was observed in September 2011, followed by 2010, 2009 and 2008 in the same month. The present study is useful in planning the long-term management and conservation of the Great Rann of Kachchh wetland.  相似文献   

13.
Wissant Bay is a picturesque and highly frequented French coastal resort comprising beaches, dunes, marshes, and bold capes facing the Dover Strait. Situated at the southern approaches to the North Sea, the 8 km-long bay has, arguably, the most rapidly eroding shoreline in metropolitan France. Retreat has largely affected much of the bay shoreline west of Wissant town, with parts of this sector having lost up to 250 m in the last 50 years, whereas a much smaller sector east of the town is a zone of accretion. Various dune, beach and nearshore morphodynamic studies conducted over the last decade have identified chronic sand bleeding from the western sector and longshore transport to the east, within a framework of what appears to be an ongoing shoreline rotation process within a dominant longshore sediment transport cell between the headland of Cape Gris Nez to the west and the bold chalk cliffs of Cape Blanc Nez to the east. Retreat of the narrowing beach-dune barrier poses a threat in the coming years, as there is a likelihood of it being breached by storms. The seawall protecting Wissant town has also been repeatedly damaged since 2000 due to the chronic sand deficit. These changes involve interactions between a nearshore sand bank, a complex macrotidal beach comprising multiple subtidal to intertidal bars and troughs subject to strong longshore sand transport especially during storms, and aeolian dunes. The nearshore bank acts as a dissipater of incident storm wave energy and as a sand source for the multi-barred beaches and dunes, and has been strongly impacted by past massive aggregate extraction. The bank is, in turn, part of a larger system of mobile banks reworked by storms and tidal currents within the framework of a sand circulation system between the eastern English Channel and the southern North Sea. The aim of this work is to confront knowledge acquired on the morphodynamics of the bay with an engineering plan proposed to counter erosion and reestablish shoreline stability. The plan is based essentially on the creation of an ‘equilibrium’ beach profile, capable of withstanding storms, comprising an enlarged upper beach berm, and constructed through beach nourishment from a nearshore source located 20 km east of Wissant Bay. The plan has not been implemented because of cost. Even if it were to be implemented, its efficiency seems very doubtful because the beach profile simulations on which it is based neglect the complex multi-barred morphology and the overwhelming dominant longshore transport over bars during storms. The plan is also geared towards resolving a local problem of erosion that is embedded in the larger and rather complex spatiotemporal morphodynamics and sediment transport mechanisms evoked above. Wissant Bay is emblematic of the problems of erosion facing many communes in France, and elsewhere. The fight against shoreline erosion generally starts with the commonly insurmountable hurdle of fund-raising for costly engineering proposals that are not always based on a clear grasp of the embedded scales of change affecting the coast.  相似文献   

14.
Coastal erosion may be caused by natural causes as well as human factors. Karasu town of the city of Sakarya in Turkey which is a touristic region on the Black Sea coast has been experienced a drastic coastal erosion. In recent years, this erosion reached the threatening dimensions for the structures in the settlement. According to the temporal analyses of Landsat satellite images, the maximum erosion on the coastline was detected 100 m between 1987–2013. The results of the study show that the harbour construct on the Karasu coast has the major impact on this event. The secondary factor is that the amount of the sediment carried by the Sakarya River was decreased in time due to different reasons. To prevent the coastal erosion, a series of offshore breakwaters were planned after the failed application of groins on the coastline. In this study, temporal changes of the coastline are investigated by the Landsat satellite data and land surveys, possible reasons of the erosion are discussed and the solutions are proposed regarding the coastal structures.  相似文献   

15.
A study on the modern dynamics and shoreline changes from 1954 to 2014 of the Molise coast (central Adriatic Sea) has been carried out. Short to long-term shoreline changes and associated surface area variations have been assessed in GIS environment for the study coast, subdivided in nine coastal segments (S1-S9), by using 100-m regularly spaced transects. In addition, the possible influence of natural and anthropogenic factors, especially of climatic variability and engineered shoreline defense structures, has been investigated. The Molise coast has experienced notable long-term erosion (period 1054-2014) that caused an overall coastal land loss of approximately 940,000 m2. Erosion was, yet, limited to coastal segments S1 and S7, nearest to the mouths of major rivers, namely Trigno and Biferno, while the major part of the study coast has remained essentially stable or even advanced. Increased shoreline protection by defense structures has generally favoured shoreline stability and frequently generated shoreline advance, except for segments S1 and S7. Observed differences in shoreline change rates over time at the decadal to interannual scale, have not find a response in the analysis of available data on meteo-marine conditions of the Molise coast and climate variability indices, pointing out the need to improve knowledge on meteomarine conditions and on climatic variability forcing of the study area. From 2004 to 2014, the Molise shoreline remained essentially stable. Nonetheless, most recent shoreline changes (period 2011-2014) and modern shoreline dynamics indicate that erosion has become more widespread, involving at least part of segments S2-S3 and S8-S9, located south of the river mouth segments. The localized long-term shoreline retreat and most recent shoreline erosion appear to be primarily related to channel adjustments of the Biferno and Trigno rivers that occurred since the 1950s under the control of human interventions on the rivers, especially the construction respectively of a dam and a check dam along their lower courses, that trap of most of their solid load, affecting so adversely the sediment budget of the river mouths areas and adjacent beaches. Overall data acquired on the recent shoreline evolution and modern shoreline dynamics of the Molise coast and on related causal factors provide a good basic knowledge for regional coastal management purposes, and for further scientific purposes. Particularly, they suggest the opportunity to deepen a number of aspects such as the relationship between the coast and river catchments feeding it, the possible influences on the Molise shoreline dynamics of the neighbouring coasts, the efficiency/obsolescence of defense structures and the present-day vulnerability to coastal erosion of the Molise coast.  相似文献   

16.
This paper focused on the past shoreline change rates along the coastal plain of the Volturno River, in southern Italy, western Mediterranean. A wide database comprising historical maps, aerial photographs, topographic sheets, bathymetric data was used to extract the spatial and temporal information of the coastlines at seven time points. Coastline displacement was calculated for two successive time points and relative surface variation (accretion and erosion) was estimated as well as minimum and maximum accretion/erosion linear values and rates. The surface variation analysis has revealed that the studied coast can be considered homogeneous since the 1970s, whereas it exhibits a variety of shoreline evolutionary trends after that time period. Timing and causes of trends and rates of variation were detected. Based on the estimated shoreline change rates, an appropriate morhodynamic one-line model was applied to predict evolutionary scenarios also in presence of port and defence works. The results obtained strongly emphasize that a successful coastal management requires a constant monitoring of the human-induced changes to account for the variability of rates over time.  相似文献   

17.
Geomorphologic information, topographic maps (dated 1967), aerial photographs (dated 1999 and 2008), and spatial analysis procedures were used to investigate a 90 km long coastal sector in South Sicily (Italy). Information was obtained on coastal erosion/accretion areas, general sediment circulation pattern and littoral cell distribution. Human-made structures and natural headlands constituted important artificial limits dividing littoral in morphological cells. Ports and harbours were observed at Scoglitti, Punta Secca, Marina di Ragusa, Donnalucata and Pozzallo. Most of them worked as “transit” limits which interrupted predominant, eastward directed sedimentary transport, this way generating accretion in updrift (west) side of mentioned structures and erosion in downdrift (east) side. During the 1967–2008 period, about 62,000 m2 and 42,000 m2 of beach surface were respectively formed updrift of Scoglitti and Donnalucata ports. The construction of Pozzallo port gave rise to the formation of a “convergent” limit which favoured large accretion (94,000 m2) east of port structure. Most important natural structures were observed at Punta Zafaglione, P. Braccetto and Cava d’Aliga. The knowledge of littoral cell distribution acquires a great importance for appropriate management of coastal erosion processes which may be mitigated installing by-passing systems in ports and harbours and carrying out nourishment works in eroding areas, often located downdrift of ports and harbours (when these structures work as transit limits) and in central part of littoral cells (when these structures work as convergent limits).  相似文献   

18.
The Topolobampo coastal lagoon system, located on the eastern side of the Gulf of California, is a marine zone of considerable economic importance with vessel traffic, dredging operations and aquaculture development. Despite its relevance as a conservation site, this ecosystem has been poorly studied. Since life in marine substrates is abundant, we investigated the capability of tidal hydrodynamics in the lagoon to erode and to accumulate sediment. We calculated the morphodynamics caused by bed load sediment transport applying a two dimensional non-linear hydrodynamic finite difference model. Bed erosion and accretion patterns of sediment (for specific grain size: 170 μm) were determined from the divergence of sediment transport. After a year of numerical simulation of sediment transport the areas of noticeable changes on the bottom of the lagoon have been revealed. Most of sediment accretion took place in the narrow steeped channel connecting the Topolobampo and Ohuira sections. This area appears characterized by the presence of high tidal velocity gradients. Another finding was that accretion areas were coupled with erosion zones in an alternating form. This outcome suggests that sediment do not travel long distances but is deposited nearby the erosion sites. The results are strong evidence of the influence of tidal hydrodynamics on the sediments distribution in the Topolobampo coastal lagoon system and on the generation of substrates where marine life may find protection.  相似文献   

19.
This study examined the relative impacts of different human activities and natural resource protections on the spatial distribution of beach vegetation and related habitat features (wrack, dune succession) in New Jersey (USA). Field surveys of the 209-km shoreline categorized beach segments according to vegetation cover classes, human activities, protection measures (exclosures, beach management plans, access restrictions) and ownership status (federal, state, etc.). A partition model (classification tree) was used to confirm the relative dominance hierarchy of human actions on the distribution of beach vegetation observed, and quantitative comparisons of dominant activities were conducted using vegetation data collected on 218 transects. The spatial extent of beach vegetation was found to be severely restricted by human activities when unconstrained by resource protections. The greatest reductions were found to result from mechanical raking (?99 %), scraping (?91 %) and all-year recreational ORV use (?86 %), which were dominant on nearly 70 % of the state shoreline. Beaches containing larger areas of vegetation (>5 m) were concentrated in areas with resource protections of various kinds (99 %), and on federal or other public parklands (68 %). Exclosures resulted in the greatest coverage of vegetation (48 % of beach surface) compared to public access restricted areas (41 %), beach management plans (31 %), government-only ORV use (31 %), and off-season recreational ORVs (15 %). Greater protection and recovery of beach vegetation and habitat is needed for species conservation and erosion protection in New Jersey and other coastal environments where these activities occur.  相似文献   

20.
The largest beach replenishment project ever in France was completed in February 2014 in Dunkirk on the coast of northern France. A volume of 1.5 × 106 m3 of sand extracted from a navigation channel was placed on the beach to build up a 150 to 300 m wide supratidal platform in front of a dike, called « Digue des Alliés », which protects several residential districts of Dunkirk from marine flooding. High resolution topographic surveys were carried out during 2½ years to monitor beach morphological changes, completed by a hydrodynamic field experiment conducted in February 2016. Approximately ?138,200 m3 of sand, corresponding to 9.2% of the initial nourishment volume, were eroded over the nourishment area in about 2 years. An obvious decrease in erosion eastward with a shift from erosion to accumulation was observed, suggesting an eastward redistribution of sand. This longshore sand drift is beneficial for the eastward beach of Malo-les-Bains where most of the recreational activities are concentrated. Hydrodynamic measurements showed that waves and wave-induced currents play a major role on the longshore sand redistribution compared to tidal flows. Strong relationships were observed between cumulative offshore wave power and beach volume change during distinct beach survey periods (R2 = 0.79 to 0.87), with more significant correlations for northerly waves. A slight decrease in erosion during the second year compared to the first year after nourishment suggests that the loss of sand should decrease after an initial phase of rapid readjustment of the beach shape towards equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号