首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 85 毫秒
1.
采用乳化液膜法自组合成硫化镉量子点(CdS quantum dots,CdS QDs),探讨CdS QDs的体外毒性作用及可能的作用机制.选用人胚肝细胞(L-02)作为细胞模型,采用不同浓度的CdS QDs(0.00、1.25、2.50、5.00、10.00、20.00、40.00μg·mL-1)对L-02细胞进行染毒.24h后,检测细胞内乳酸脱氢酶(LDH)释放量、谷胱甘肽(GSH)含量和超氧化物歧化酶(SOD)活力,并比较加入抗氧化剂N-乙酞半胱氨酸(NAC)后细胞存活率的变化,同时测定了细胞内外的镉离子浓度.结果表明,与空白对照组相比,CdS QDs单独染毒组细胞存活率显著降低(p<0.05或p<0.01);加入抗氧化剂NAC后,10.00、20.00、40.00μg·mL-1染毒组细胞存活率与单独染毒组相比显著上升(p<0.01).CdS QDs浓度为5.00μg·mL-1时,细胞内Cd2+的浓度略高于细胞外Cd2+的浓度,在其他浓度下,细胞外Cd2+的浓度均显著高于细胞内Cd2+的浓度.当作用浓度上升至10.00μg·mL-1时,人胚肝细胞内LDH含量显著增加,且随着作用剂量的升高,LDH含量逐渐增加.与空白对照组相比,40.00μg·mL-1CdS QDs染毒组SOD活力和20.00μg·mL-1CdS QDs染毒组GSH含量均显著降低(p<0.05).Cd2+易透过L-02细胞的细胞膜而进入细胞内,从而造成细胞损伤.氧化损伤可能是CdSQDs对L-02细胞毒性作用的机制之一.  相似文献   

2.
纳米SiO2与常规SiO2颗粒对Hela细胞的细胞毒性作用   总被引:1,自引:0,他引:1  
为了探讨纳米SiO2和常规SiO2颗粒对Hela细胞的细胞毒性作用,采用不同浓度的纳米SiO2和常规SiO2颗粒(0.05、0.1、0.2、0.4、0.8、1.6μg·μL-1)对Hela细胞进行12h染毒,应用MTT法检测细胞毒性效应.研究发现,较低浓度(≤0.2μg·μL-1)的纳米SiO2和常规SiO2对Hela细胞无明显细胞毒性(p>0.05);较高浓度时,纳米SiO2(≥0.4μg·μL-1)和常规SiO2(≥0.8μg·μL-1)对Hela细胞具有明显细胞毒性作用(p<0.01),并且随浓度增大细胞毒性增强;当浓度≥0.4μg·μL-1时,纳米SiO2的细胞毒性明显高于相同浓度的常规SiO2(p<0.05).以上结果表明,纳米SiO2和常规SiO2颗粒均能对Hela细胞产生细胞毒性,且纳米SiO2的细胞毒性强于常规SiO2;低浓度(≤0.2μg·μL-1)的纳米SiO2和常规SiO2具有很好的生物相容性.  相似文献   

3.
为了探讨纳米水滑石与Hela细胞的生物相容性,采用单细胞凝胶电泳法检测了纳米水滑石对Hela细胞DNA的损伤,并采用H2DCF-DA荧光法检测了纳米水滑石对Hela细胞活性氧簇的影响.结果发现,随着纳米水滑石浓度的升高(0~800μg·mL-1),Hela细胞尾部DNA含量、尾距及胞内活性氧簇含量均呈逐渐升高趋势;较低浓度(50、100μg·mL-1)纳米水滑石处理后,Hela细胞尾部DNA含量、尾距及胞内活性氧簇含量与对照组无显著性差异(p>0.05),而较高浓度(200、400、800μg·mL-1)纳米水滑石处理后,Hela细胞尾部DNA含量、尾距及胞内活性氧簇含量与对照组差异显著(p<0.05,p<0.01).以上结果表明,较高浓度(≥200μg·mL-1)的纳米水滑石可对Hela细胞DNA产生损伤,而较低浓度(≤100μg·mL-1)的纳米水滑石则具有较好的生物相容性,有可能作为载体应用于医药领域.  相似文献   

4.
纳米Zn/Al-水滑石对Hela细胞的氧化应激效应   总被引:2,自引:0,他引:2  
为初步探讨纳米Zn/Al-水滑石对Hela细胞的氧化应激效应,采用不同浓度的纳米Zn/Al-水滑石悬液(0、50、100、200、400、800μg·mL-1)对Hela细胞进行染毒,12h后检测Hela细胞中超氧化物歧化酶(SOD)活性和谷胱甘肽(GSH)含量.结果表明,随着纳米Zn/Al-水滑石染毒浓度的升高,Hela细胞SOD活性逐渐降低,较低浓度组(≤100μg·mL-1)与对照组无显著性差异(p>0.05),较高浓度组(≥200μg·mL-1)与对照组存在显著性差异(p<0.01);随着纳米Zn/Al-水滑石染毒浓度的升高,Hela细胞GSH含量也逐渐降低,较低浓度组(≤50μg·mL-1)与对照组无显著性差异(p>0.05),较高浓度组(≥100μg·mL-1)与对照组存在显著性差异(p<0.05或p<0.01);在实验浓度下,Hela细胞SOD活性和GSH含量与纳米Zn/Al-水滑石染毒浓度呈明显的剂量-效应关系.以上结果提示,较高浓度的纳米Zn/Al-水滑石对Hela细胞可产生一定的氧化应激效应,较低浓度的纳米Zn/Al-水滑石则具有一定的生物相容性.  相似文献   

5.
为比较直接经水体与经营养传递的2种镉(cadmium,Cd)暴露方式对方斑东风螺(Babylonia areolata)不同组织Cd蓄积和毒性的差异,采用室内模拟法,将螺暴露于含Cd水体(Cd2+:100μg·L-1)或喂食含Cd饵料(牡蛎,34.56μg·g-1以干质量计,先经水体100μg·L-1Cd2+暴露达平衡)30d后再进行15d净化。结果显示,暴露期间,除食物相组螺胃肠道Cd浓度在第10天极显著高于对照组,但随后迅速下降外,其他各组织在2种途径及胃肠道在水相暴露时Cd的浓度均逐渐上升,暴露30d后肝胰脏中Cd浓度最高;净化期,螺鳃中Cd排出率较高,胃肠道与肝胰脏的排出率较低,至净化期末除食物相组鳃中Cd浓度与对照组无显著差异外,2种处理中其他各组织Cd浓度仍显著高于对照组。2种暴露途径中金属硫蛋白(metallothionein,MT)浓度仅在螺肝胰脏中逐渐增加,且与Cd的蓄积呈显著线性正相关。与食物相组相比,水相Cd暴露引起螺肝胰脏脂质过氧化水平(lipid peroxidation,LPO)更高,且内脏团中Cd与其亚细胞成分的金属敏感组分结合的百分比也更高。结果表明,Cd通过营养传递对螺产生的毒性较水体直接暴露低,但摄食是螺蓄积Cd的主要途径;净化后除鳃外水相暴露组螺各组织Cd的排出率较低;因此为了健康养殖与食用安全,东风螺工厂化养成时对饵料与水体Cd浓度的监测均应引起足够的重视。  相似文献   

6.
碳纳米管以其独特的结构和性能,在生物医药和电子等领域广泛应用,而其生态安全性也成为科学界关注的焦点。为探究多壁碳纳米管(MWCNTs)诱导的细胞毒性机制,将小鼠肺泡巨噬细胞(RAW264.7)暴露于6个浓度梯度(0、25、50、100、150和200μg.mL-1)的MWCNTs中,应用噻唑蓝(MTT)法测定细胞存活率,用2’,7’-二氯荧光素二乙酸(DCFH-DA)荧光染色法测定细胞内活性氧的生产量,用流式细胞方法测定MWCNTs对细胞周期的影响。同时使用抗氧化剂氮乙酰半胱氨酸(NAC)验证MWCNTs诱导的细胞氧化损伤的作用机理。结果显示,MWCNTs对RAW264.7的细胞毒性呈剂量依赖性。暴露于不同浓度的MWCNTs(25、50、100、150和200μg.mL-1)下24h后,细胞活力分别为对照的74%、62%、59%、51%和45%。MWCNTs对RAW264.7的周期阻滞作用主要发生在G0/G1期。200μg.mL-1的MWCNTs处理3h后活性氧较对照组上升6.6倍。NAC对MWCNTs细胞毒作用有明显的抑制作用,且NAC能减弱MWCNTs对RAW264.7的细胞周期阻滞作用。研究表明,活性氧能够介导MWCNTs对小鼠巨噬细胞RAW264.7的损伤,并且MWCNTS通过细胞周期G0/G1期的阻滞,诱导细胞凋亡。  相似文献   

7.
单壁纳米碳管对大鼠主动脉内皮细胞损伤作用的研究   总被引:5,自引:1,他引:4  
为了探索单壁纳米碳管(SWCNT)能否引起血管内皮细胞损伤及其可能的损伤机制,将大鼠主动脉血管内皮细胞暴露于不同浓度的SWCNT水溶液中(0.8、1.6、3.12、6.25、12.5、25、50、100、200μg·mL-1)中染毒,染毒不同时间后测定细胞存活率、细胞内LDH和GSH含量并进行综合分析.结果表明,随着SWCNT染毒浓度和染毒时间的上升,大鼠主动脉血管内皮细胞存活率逐渐下降,死亡率逐渐上升;细胞内LDH在SWCNT染毒浓度为0 ̄100μg·mL-1范围内其释放随染毒剂量的增加而逐渐上升,在200μg·mL-1剂量组,其释放有所减弱;而细胞内GSH在SWCNT染毒浓度为0 ̄200μg·mL-1范围内其含量随染毒剂量的增加而逐渐下降.以上结果说明,SWCNT可致血管内皮细胞损伤,其机制可能为氧化损伤途径.  相似文献   

8.
为了评价环境中五氯酚(PCP)和八氯代二苯并二噁英(OCDD)对水环境以及鱼类的影响,以斑马鱼为模式生物,研究了PCP和OCDD对其胚胎发育的单一及复合毒性效应.结果表明,PCP单独暴露(浓度25μg·L-1~5mg·L-1)对斑马鱼胚胎发育具有较强的毒性效应,可导致胚胎孵化率显著下降,死亡率、畸形率显著上升,而OCDD单独暴露(200、500μg·L-1)对斑马鱼胚胎发育没有明显的毒性效应;OCDD与环境浓度的PCP复合暴露(OCDD+PCP1:250μg·L-1+25μg·L-1;OCDD+PCP2:250μg·L-1+50μg·L-1)对斑马鱼胚胎的存活与发育等没有显著影响,对斑马鱼胚胎内CYP1A基因表达以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的酶活力也没有显著影响,在实验浓度下二者共存没有明显的复合毒性效应。  相似文献   

9.
采用体外细胞暴露实验研究了人肺腺癌细胞系(A549)单层细胞暴露于50和500μg·mL-1两种浓度纳米氧化钛、纳米氧化硅、碳纳米管和晶体石英砂等四种颗粒物后产生的氧化应激和炎症反应.用细胞活度、细胞内活性氧总量和细胞上清液中白细胞介素8(IL-8)表达量表征暴露效应.研究结果表明,纳米氧化钛、纳米氧化硅和碳纳米管在体外暴露实验过程中均发生不同程度的聚集;细胞暴露48h后,三种纳米颗粒物均使A549细胞活度下降,诱导细胞产生过量活性氧,同时刺激细胞IL-8表达量增高;三种纳米颗粒物中,纳米氧化钛和纳米氧化硅对细胞活度影响较大,碳纳米管诱发的炎症效应较另两种纳米材料强.  相似文献   

10.
林丹短期暴露下的斑马鱼(Brachydanio rerio)组织学变化   总被引:2,自引:0,他引:2  
以斑马鱼(Brachydaniorerio)为受试生物,初步探讨了林丹对斑马鱼的急性毒性以及不同浓度(0.01μg·L-1、1.0μg·L-1、100.0μg·L-1)的林丹暴露36d后对斑马鱼鳃和肝组织结构变化的影响.结果表明,林丹对斑马鱼96h-LC50为97.98μg·L-1,95%可信限为94.38 ̄101.72μg·L-1.当林丹浓度为0.01μg·L-1时,斑马鱼的鳃和肝组织结构未发生明显变化,而暴露在1.0μg·L-1和100.0μg·L-1林丹溶液中的斑马鱼的鳃和肝组织结构变化显著.斑马鱼鳃组织变化为:上皮细胞残损、脱落,鳃小片上皮细胞水肿,柱细胞变形.斑马鱼肝组织变化为:部分肝细胞肿大,细胞核萎缩变形或偏离细胞中心,胞质疏松,空泡明显增加,细胞质中可见脂沉积.与1.0μg·L-1林丹暴露相比,暴露在100μg·L-1林丹溶液中的斑马鱼鳃和肝组织结构受到的损害更为严重.  相似文献   

11.
针对渔用废电池被大量丢弃在海洋中的现象,分别开展了废电池中主要重金属离子溶出特性试验和废电池浸出液对不同海洋生物急性毒性效应的研究.试验结果显示,在盐度为20的40L海水中自然浸泡状态下(45节电池),松下一号锌锰废电池溶出液中铅、镉、汞溶出浓度不断增加,但溶出速率较慢.单节电池在第60d,铅、镉和汞溶出总量分别为2.08μg、0.52μg和0.60μg,溶出率分别为0.004%、0.018%和1.263%;第210d铅、镉和汞溶出总量分别为28.76μg、6.38μg和1.02μg,溶出率分别为0.057%、0.224%和2.147%.一节废电池中铅、镉和汞总量在1L海水中全部溶出后浓度分别可达到50445μg·L-1、2850μg·L-1和47.5μg·L-1,分别是我国渔业水质标准(GB11607-89)的1009倍、570倍和95倍.废电池浸出液对不同受试生物的急性毒性试验结果表明,当废电池浸出液混合浓度中铅、镉和汞浓度分别为3.39μg·L-1、0.64μg·L-1和0.76μg·L-1时(45节电池40L海水浸泡60d),对黑鲷、脊尾白虾和缢蛏的96h半致死浓度值分别为溶出液混合浓度的5.13%、4.87%和6.71%,废电池浸出液中各重金属离子对海洋生物毒性具有非常强的协同作用.在鱼、虾、贝三类受试生物中,贝类对废电池溶出液毒性的耐受能力最强,鱼类次之,虾类最弱.  相似文献   

12.
4种典型纳米材料对小鼠胚胎成纤维细胞毒性的初步研究   总被引:4,自引:0,他引:4  
为探讨不同种类纳米材料对原代培养小鼠胚胎成纤维细胞(Mouse embryo fibroblasts,MEF)的毒性效应及作用机制,选择4种典型的纳米材料(纳米碳、单壁碳纳米管、纳米氧化锌、纳米二氧化硅)制备颗粒悬液,设立5个剂量组(5、10、20、50、100μg·mL-1)对BALB/c小鼠MEF细胞进行24、48、72h染毒培养,利用细胞形态学观察和噻唑蓝实验(MTT比色法)检测上述4种纳米材料对MEF细胞活性的影响,同时,测定染毒24h后细胞培养液上清中乳酸脱氢酶(LDH)活性以探讨纳米颗粒对细胞膜完整性的影响.结果显示:1)4种纳米材料均能明显影响MEF细胞的生长形态.染毒24h后,MEF细胞发生不同程度的回缩变形,细胞间隙增大,排列稀疏,胞内颗粒物增多,细胞透明度下降.2)纳米碳、纳米氧化锌、纳米二氧化硅对MEF细胞增殖的抑制作用和对细胞膜完整性的损伤作用均随染毒剂量的升高而增强,具有明显的剂量-效应关系,其半数致死浓度(24h-IC50)分别为21.85、21.94、461.10μg·mL-1;碳纳米管组的剂量-效应之间不呈对数线性关系,未能得出其24h-IC50.3)在不同染毒剂量水平上,4种纳米材料的毒性对比差异显著:低剂量水平上纳米碳与碳纳米管的毒性强于纳米氧化锌和纳米二氧化硅,随着剂量的升高纳米氧化锌的细胞毒性升高最为显著.结果提示,纳米材料能够对MEF细胞造成毒性损伤,破坏细胞膜的完整性可能只是作用途径之一;纳米材料的毒性可能受粒径、形状、化学组成等许多因素的影响.  相似文献   

13.
邻苯二甲酸丁基苄酯致神经细胞氧化损伤   总被引:4,自引:3,他引:1  
为探究邻苯二甲酸丁基苄酯(butyl benzyl phthalate,BBP)对小鼠神经的毒性作用,进行了小鼠体外毒理学研究。首先用不同浓度的邻苯二甲酸丁基苄酯染毒神经模型细胞—N2a神经瘤细胞,通过噻唑蓝比色法(MTT),Hoechst 33258染色实验评价邻苯二甲酸丁基苄酯的细胞毒效应;通过对染毒细胞氧自由基(ROS)、丙二醛(MDA)、还原型谷胱甘肽(GSH)含量的检测来探究BBP对小鼠神经瘤细胞的氧化损伤效应。随着BBP浓度的不断增高,细胞的MTT值逐渐变小,当BBP的浓度达到10 g·L-1时,MTT实验结果与对照组出现显著性差异;Hoechst 33258染色结果显示:高浓度的BBP导致细胞核呈现出不规则状态,出现了凋亡小体;随着BBP染毒浓度的升高N2a细胞中的ROS水平和MDA含量逐渐上升,分别在0.16 g·L-1和10 g·L-1开始与对照组相比出现了显著性的差异(p0.05);而GSH系数呈现下降趋势,在0.32 g·L-1时开始出现显著性差异(p0.05)。实验结果表明高浓度的邻苯二甲酸丁基苄酯可以导致神经瘤细胞的凋亡,并产生氧化损伤效应。  相似文献   

14.
微囊藻毒素对束丝藻细胞生长和抗氧化系统的影响   总被引:1,自引:0,他引:1  
为从活性氧(ROS)角度探讨微囊藻毒素(MC)导致藻类细胞死亡的机理及揭示藻细胞对MC诱发的氧化胁迫的响应机制,采用50和500μg·L-1的微囊藻毒素LR(MC-LR)处理束丝藻(Aphanizomenon sp. DC01)细胞,测定了细胞生长、细胞内活性氧(ROS)含量及抗氧化系统的变化.结果表明,50μg·L-1的MC-LR处理对藻细胞的生长无显著影响,而500μg·L-1的MC-LR处理可诱导藻细胞死亡.50μg·L-1的MC-LR处理的藻细胞ROS含量在处理第2d显著高于对照;但藻细胞能通过还原型谷胱甘肽(GSH)含量,超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPX)活性改变修复氧化损伤,使ROS水平在处理第3d恢复到对照水平.500μg·L-1的MC-LR处理可显著降低藻细胞GSH含量和SOD与GPX活性,刺激藻细胞生成过量的ROS;ROS在毒素处理4d后突然暴发,过量的ROS引起膜质过氧化,并最终导致藻细胞死亡。  相似文献   

15.
随着量子点(quantum dots,QDs)在生物标记和医学影像等领域的应用日益广泛,其环境暴露量逐渐增加,深入探讨QDs的毒性机制具有重要意义。QDs通过产生活性氧(ROS)诱发毒性效应是目前普遍接受的毒作用模式。为了探讨量子点的毒性与所诱发的ROS的种类和数量的关系,选用碲化镉量子点(CdTe QDs和CdTe/ZnS QDs),利用电子顺磁共振技术(EPR)分别测定了CdTe QDs和CdTe/ZnS QDs在无细胞体系中诱导ROS产生的种类和强度;利用EPR法、紫外可见分光光度法和荧光分光光度法分别测定了4、20和100nmol·mL-1的CdTe QDs和CdTe/ZnS QDs对超氧阴离子(·O2-)和羟基自由基(·OH)产生的促进作用。实验结果显示,CdTe QDs可诱导·O2-的产生;CdTe QDs和CdTe/ZnS QDs对·OH与·O2-的产生有明显的促进作用,且具有剂量-效应关系。研究表明,量子点可诱导和促进ROS产生,不同结构量子点对ROS的诱导和促进作用不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号