首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
典型酚类化合物对土壤跳虫的慢性毒性   总被引:1,自引:0,他引:1  
以跳虫Folsomia candida为受试物种,基于其28 d繁殖试验评价了12种典型酚类化合物的慢性毒性效应。结果表明,在所设浓度范围内,除间苯二酚外的其他酚类对跳虫繁殖均存在不同程度的抑制效应。氯酚类对跳虫慢性毒性最大,2,4-二氯酚、2-氯酚、2,4,6-三氯酚对跳虫繁殖毒性的EC50分别为5.94、10.2、19.7 mg·kg-1;其次为烷基酚类,2,4-二甲基酚、3-甲基酚、壬基酚对跳虫繁殖毒性的EC50分别为21.7、35.1、50.5 mg·kg-1。苯酚的毒性较上述烷基酚低,EC50值为71.7 mg·kg-1。其他取代酚—包括2-萘酚、4-硝基酚、邻苯二酚对跳虫繁殖的EC50分别为95.4、133、306 mg·kg-1。双酚A仅在最高浓度(500 mg·kg-1)处理下对跳虫繁殖有显著影响。  相似文献   

2.
3种氯酚化合物对大型溞的联合毒性   总被引:4,自引:1,他引:4  
氯酚类化合物是我国水体中广泛存在的一类优先控制污染物,以大型溞(Daphnia magna)为试验生物,测定了2,4-二氯酚、2,4,6-三氯酚和五氯酚对大型溞的48 h致死的单一毒性和联合毒性.基于单一氯酚化合物的浓度-效应曲线,运用浓度加和(CA)与独立作用(IA)2个模型对2种等毒性浓度比的混合物(Mix-LC5...  相似文献   

3.
利用共价三嗪有机框架材料(CTF-1)对4-氯酚(4-CP)、2,4-二氯酚(2,4-DCP)、2,4,6-三氯酚(2,4,6-TCP)和五氯酚(PCP)等4种不同氯原子取代数目的氯酚类污染物进行光催化降解研究,探讨了底物结构对氯酚脱氯降解效率的影响及机制.结果表明,氯酚脱氯降解过程明显受苯环氯原子取代数目的影响,氯原子数目越多,脱氯降解效率越高,氯原子数目与表观速率常数呈显著正相关,氯酚降解及脱氯速率均为:PCP>2,4,6-TCP>2,4-DCP>4-CP.对CTF-1光催化降解氯酚机制研究表明,活性物种在反应中不起作用,体系反应机制为针对氯酚上取代氯位点进行水解脱氯过程.本研究结果为深入揭示氯酚脱氯降解机制提供了理论依据,也为光催化技术处理卤代酚类废水提供了技术参考.  相似文献   

4.
氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类化合物具有环境稳定性、生物累积性和生物毒性,因而其在水环境中的生态毒理效应一直是人们关注的焦点。在水体中存在最普遍的酚类化合物主要有2,4-二氯酚(2,4-DCP),2,4,6-三氯酚(2,4,6-TCP)和五氯酚(PCP)。本文对近几年来这3种典型氯酚类化合物的水生态毒理学研究进行了总结,主要包括它们对水生生物的急性毒性、氧化损伤、发育毒性、内分泌干扰、遗传毒性、致癌性、免疫毒性、细胞毒性以及复合毒性的效应和机制,同时对目前存在的问题和进一步的研究方向进行了讨论和展望。  相似文献   

5.
通过共沉淀法制备了Fe-Cu-柱撑黏土(Fe-Cu-PILC)催化剂,并以单氯酚、二氯酚、三氯酚作为模式化合物,研究了氯酚中氯原子取代数目、取代位置对其降解动力学的影响,并探讨了氯离子的存在对反应的影响,也基于费米分布函数对其降解动力学进行非线性拟合.结果显示,这种基于费米函数的半经验模型适用于模拟氯酚氧化降解动力学反应(R20.818).氯酚降解速率如下:3-氯酚(3-CP)3,5-二氯酚(3,5-DCP)2,3-二氯酚(2,3-DCP)3,4-二氯酚(3,4-DCP)2,5-二氯酚(2,5-DCP)4-氯酚(4-CP)2-氯酚(2-CP)2,4-二氯酚(2,4-DCP)2,4,6-三氯酚(2,4,6-TCP)2,6-二氯酚(2,6-DCP).氯酚降解过程明显受到苯环氯原子取代数目、取代位置的影响,且氯原子取代位置具有更重要的影响:氯原子取代数目相同时,间位氯越多,降解越快,邻、对位越多,降解越慢.这主要通过影响表观速率常数k和半衰期t*得以实现.3,5-DCP降解表观速率常数k高达18.17 h~(-1),半衰期为0.2 h,而2,6-DCP表观速率常数仅为0.64 h~(-1),半衰期为5.88 h.氯离子的存在对氯酚降解动力学过程产生不同程度的抑制作用,其中2,6-DCP、2,4,6-TCP的抑制作用最为明显,这主要是由于氯离子的存在延长了其半衰期(分别由5.88 h、4.29 h延长至9.00 h、5.99 h),而对3,4-DCP、3,5-DCP则几乎没有抑制作用.表明氯离子抑制邻位氯代程度高的氯酚降解而不抑制间位氯代程度高的氯酚降解.研究结果为深入揭示氯酚降解机理提供了理论基础,也为提高含酚废水降解速率提供了技术参考.  相似文献   

6.
太湖流域3种氯酚类化合物水质基准的探讨   总被引:13,自引:7,他引:13  
按照美国地面水水质基准制定的程序和规范,筛选了太湖流域广泛存在的水生生物物种并收集了相应的基础毒性数据,探讨了五氯酚(PCP)、2,4-二氯酚(2,4-DCP)和2,4,6-三氯酚(2,4,6-TCP)在我国太湖地区的水生态基准的定值.同时采用蒙特卡罗构建物种敏感度分布(SSD)曲线和生态毒理模型方法预测了3种氯酚类化合物对太湖水生生物的急性基准浓度(CMC)和慢性基准浓度(CCC).结果表明,基于EPA规范方法和急慢性毒性比率得到的PCP、2,4-DCP和2,4,6-TCP3种氯酚类化合物的CMC值分别为25、908和594μg·L-1,CCC值分别为12、176和162μg·L-1;基于SSD曲线得到的CMC值分别为25、818和648μg·L-1,CCC值分别为6、75和198μg·L-1;基于生态毒理模型得到的CCC值分别为4、15和67μg·L-1,显示出3种方法得到的氯酚类化合物的CMC或CCC在同一个数量级上,但在数值上由生态毒理模型得出的CCC要小于其它两种方法,并且除PCP的急慢性基准值与美国EPA推出的水生态基准值相近外,其它两种氯酚类化合物的急慢性基准值均低于美国EPA推出的急慢性基准值.研究结果希望能为我国水质基准的制定提供一些有用的线索.  相似文献   

7.
卫碧文  于文佳  郑翊  林莉  杨荣静  高欢 《环境化学》2011,30(6):1210-1213
建立了玩具材料中的2,4-二氯苯酚、2,3,4,6-四氯苯酚、2,4,6-三氯苯酚、2,4,5-三氯苯酚、五氯苯酚、林丹、氟氯氰菊酯、氯氰菊酯、溴氰菊酯、氯菊酯10种木材防腐剂的测定方法,首先用乙醇/冰醋酸溶液提取,再用乙酸酐进行衍生化,最后用正己烷萃取,以2,3,4-三氯苯酚为内标添加到萃取物中,用GC-MS进行定性...  相似文献   

8.
唐雪 《环境化学》2014,(11):2011-2013
建立了使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用测定生活饮用水中氯酚类物质(2,4-二氯酚,2,4,6-三氯酚,五氯酚)的方法.方法无需衍生和复杂的前处理,操作简便.3种氯酚类物质线性关系良好,相关系数大于0.999;仪器精密度良好,3个不同浓度标准溶液重复进样6次,保留时间和峰面积相对标准偏差分别在0.04%—0.14%和0.67%—3.39%之间.3种物质检出限在0.04—0.10μg·L-1(S/N=3)范围内,对生活饮用水样品加标,3个浓度的加标回收率在80.0%—110%之间.  相似文献   

9.
为探讨含水层介质对氯酚类污染物的吸附规律,以吉林市含水层介质--砂土为实验材料,采用批量吸附实验方法分别研究了2,4-二氯酚、2,4,6-三氯酚及五氯酚单独存在和共存条件下在砂土上的吸附-解吸行为,并对pH、离子强度对吸附过程的影响进行了探讨.结果表明,砂土对三种氯酚的吸附-解吸符合Freundlieh等温模型,吸附常数Kd分别为5.659、2.507和2.104,解吸常数分别为22.642、8.222和4.488;吸附反应符合二级吸附速率动力学方程,吸附速率常数K分别为0.4851 kg·mg-1·h-1、0.0299 kg·mg-1·h-1和0.1225 kg·mg-1·h-1.氯酚在砂土上的吸附机理以疏水分配和配位体交换为主.在实验范围值内,吸附量随pH增加而减小,增加离子强度可以明显加强氯酚在砂土上的吸附.  相似文献   

10.
本文以石墨烯修饰电极(Gr-GCE)为工作电极,以人乳腺癌MCF-7细胞为模型细胞,运用线性扫描伏安法研究了MCF-7细胞的裂解液电化学行为,确定其响应来源为黄嘌呤和鸟嘌呤的电化学氧化.跟踪描述了细胞生长曲线,研究了五氯酚(PCP)、2,4,6-三氯酚(TCP)和2,4-二氯酚(DCP)对MCF-7细胞的毒性,计算得到半数抑制效应浓度(IC_(50))值分别为77.62、174.08、449.78μmol·L~(-1),并与四甲基偶氮唑盐(MTT)比色法进行比较,结果表明氯酚类污染物对MCF-7细胞活性有明显抑制作用,两种方法测得细胞毒性顺序均为:PCPTCPDCP,且细胞电化学法更为灵敏.  相似文献   

11.
胆酸钠是一种重要的生物表面活性剂,目前的研究主要集中在利胆药物研制方面,而有关其在增溶修复有机污染方面的应用研究较少.本文考察了胆酸钠(Na C)、脱氧胆酸钠(Na DC)、十二烷基硫酸钠(SDS)、曲拉通(TX-100)和十六烷基三甲基溴化铵(CTAB)对2,4,6-三氯苯酚(2,4,6-TCP)和2,4-二氯苯酚(2,4-DCP)的增溶作用,并探究了底物结构、温度和无机离子对Na C增溶氯酚的性能的影响.实验结果表明,当表面活性剂浓度大于临界胶束浓度(CMC)时,2,4,6-TCP和2,4-DCP的表观溶解度与表面活性剂浓度具有良好的线性关系.其中,相比于其它表面活性剂,当浓度高于0.05 mol·L-1时,Na C具有更良好的增溶性能.随苯环上氯原子个数从0增加到3,Na C的摩尔增溶比(MSR)值随氯酚疏水性(Kow)的增大而线性减小,Na C的胶束-水分配系数(Kmc)值则线性增大.在288—308 K的温度范围内,Na C增溶氯酚的性能逐渐增强.4种无机盐KCl、Na Cl、Na2SO4、Ca Cl2对Na C增溶2,4,6-TCP和2,4-DCP的影响不同.随着无机盐浓度的升高,Na C增溶2,4,6-TCP的能力先上升后下降,而增溶2,4-DCP的能力则迅速下降.  相似文献   

12.
采用固相微萃取(SPME)与气相色谱-质谱联用,分析了3种养殖模式鱼塘沉积物中氯酚类(CPs)化合物的污染特征.结果表明,一般四大家鱼养殖模式(A)沉积物中总CPs质量分数(干质量)为9.91 ng·g-1,猪.鱼综合养殖模式(B)与鸭-鱼综合养殖模式(C)沉积物总CPs质量分数分别为7.79 ng·g-1和4.84 ng·g-1.总CPs及15种CPs化合物在A、B模式和鸭-鱼综合养殖模式(C)沉积物中的分布特征相似,质量分数由高到低的顺序为A模式,B模式,C模式.沉积物中质量分数比较高的一氯酚、二氯酚、三氯酚和四氯酚分别是4-CP、2,4-DCP、2,4,6-TCP和2,3,4,6-TeCP.五氯酚(PCP)质量分数与4-CP、2,5+2,6+3,5-DCP、3,4-DCP、2,4,5-TCP、2,3,6-TCP、2,3,4-TCP、2,3,5,6-TeCP、2,3,4,6-TeCP、2,3,4,5-TeCP等氯酚化合物质量分数显著正相关,显示PCP与它们之间存在降解物与产物的关系.参照美国EPA相关标准,上述鱼塘沉积物中的PCP和Ky氯酚(2,3,4,6-TeCP、2,4,6-TCP和PCP)导致生态风险的可能性较低.  相似文献   

13.
为检测海洋中环境激素及芳烃类化合物对端足类生物的污染危害,实验选择端足类河蜾蠃蜚(Corophium acherusicum)为受试生物,研究了其在壬基酚、五氯酚、硝基苯三种有机污染物暴露下的96 h急性致死毒性效应和7 d慢性DNA损伤毒性效应。计算获得壬基酚、五氯酚和硝基苯对河蜾蠃蜚的96 h半致死浓度(LC50)分别为70、465、25 000μg·L-1,三种有机污染物对河蜾蠃蜚的毒性强弱顺序为壬基酚五氯酚硝基苯。运用碱解旋法检测壬基酚、五氯酚和硝基苯对河蜾蠃蜚DNA损伤的程度,计算得到7 d半效应浓度(EC50)分别为30、256、11 000μg·L-1。实验结果表明:三种有机污染物浓度的不断加大,引起河蜾蠃蜚DNA损伤程度的不断增加,呈显著的剂量-效应关系。  相似文献   

14.
酚类化合物在矿化垃圾中吸附性能的研究   总被引:3,自引:0,他引:3  
研究了苯酚、2-氯酚、4-氯酚、2,4-二氯酚在矿化垃圾中的吸附性能.酚在矿化垃圾中的吸附是一个比较迅速的过程,经过6h的吸附即可达到平衡.pH值对酚吸附容量的影响较大,低pH值有利于矿化垃圾对酚的吸附.四种酚在矿化垃圾中的吸附容量大小顺序为:4-氯酚>2,4-二氯酚>2-氯酚>苯酚.在实验浓度范围内,酚在矿化垃圾中的吸附符合Freundlish等温吸附方程.四种酚在矿化垃圾中的吸附是酚在矿化垃圾有机质的分配作用和化学吸附作用共同作用的结果.  相似文献   

15.
硒谷胱甘肽过氧化物酶(SeGPx)是一类广泛存在于生物体内的重要抗氧化酶,SeGPx可将有毒的过氧化物还原成无毒的羟基化合物,从而保护细胞膜结构及功能不受过氧化物干扰和损害.为了探讨2,4-二氯苯酚(2,4-DCP)、2,4,6-三氯苯酚(2,4,6-TCP)和五氯苯酚(PCP)对背角无齿蚌(Anodonta woodiana)的胁迫效应,本研究克隆出AwSeGPx全基因序列,分析2,4-DCP、2,4,6-TCP和PCP对AwSeGPx表达的影响.AwSeGPx的cDNA序列全长870 bp,开放阅读框为585 bp,编码195个氨基酸.推导的AwSeGPx蛋白序列包括GPx家族标签序列(68LGFPCNQF75)和活性位点序列(156WNFEKF161)、一个典型终止密码子(165TGA167)编码的硒代半胱氨酸(U44)、酶催化活性相关保守氨基酸位点:谷氨酰胺(Q74)、精氨酸(R94和R151)和色氨酸(W156).在相同浓度条件下,PCP对背角无齿蚌毒性效应大于2,4-DCP和2,4,6-TCP.与对照组相比,浓度60、120、240、480和960μg·L-1的2,4-DCP处理后肝胰腺AwSeGPxmRNA水平增加了1.79倍以上(P<0.05);浓度100、200、400和800μg·L-1的2,4,6-TCP处理后AwSeGPxmRNA水平增加了1.01倍以上(P<0.05);浓度20、40、80、160和320μg·L-1 PCP处理能够显著诱导AwSeGPx的表达.以上结果表明,2,4-DCP、2,4,6-TCP和PCP处理对背角无齿蚌肝胰腺中AwSeGPx表达具有明显的诱导作用,这种诱导效应与动物提高过氧化物的还原能力和增强环境的耐受能力密切相关.  相似文献   

16.
采用铁屑、炉渣及河砂混合介质降解2,4-二氯酚(2,4 - DCP)模拟废水,研究铁屑粒径、铁屑投加量、铁屑与炉渣配比、pH值等因素对2,4- DCP脱氯效果的影响,探讨Feo体系降解2,4- DCP的反应机理.结果表明,铁屑粒径、铁屑投加量、铁屑与炉渣配比、pH对2,4- DCP脱氯效果均有显著影响,在铁屑粒径为2~5mm、不改变废水pH、铁屑与炉渣质量比为31:9条件下,Feo体系对2,4- DCP去除率高达97%.2,4- DCP经脱氯后主要产物为2-氯酚、4-氯酚和苯酚,反应后废水的可生化性明显提高,利于后续的生物处理.  相似文献   

17.
Fe~0体系降解2,4二氯酚的影响因素及其反应机理   总被引:1,自引:0,他引:1  
采用铁屑、炉渣及河砂混合介质降解2,4-二氯酚(2,4-DCP)模拟废水,研究铁屑粒径、铁屑投加量、铁屑与炉渣配比、pH值等因素对2,4-DCP脱氯效果的影响,探讨Fe0体系降解2,4-DCP的反应机理。结果表明,铁屑粒径、铁屑投加量、铁屑与炉渣配比、pH对2,4-DCP脱氯效果均有显著影响,在铁屑粒径为2~5 mm、不改变废水pH、铁屑与炉渣质量比为31∶9条件下,Fe0体系对2,4-DCP去除率高达97%。2,4-DCP经脱氯后主要产物为2-氯酚、4-氯酚和苯酚,反应后废水的可生化性明显提高,利于后续的生物处理。  相似文献   

18.
消毒是泳池水处理过程中一项重要的工艺,而在消毒过程中消毒剂会与水中的有机质和无机离子发生反应生成消毒副产物(DBPs).近年来泳池水DBPs引起人们越来越多的关注.本研究以8种高毒性芳香族氯/溴代DBPs(2,4,6-三氯苯酚、2,4,6-三溴苯酚、3,5-二氯水杨酸、3,5-二溴水杨酸、3,5-二氯-4-羟基苯甲醛、3,5-二溴-4-羟基苯甲醛、2,6-二氯-4-硝基苯酚、2,6-二溴-4-硝基苯酚)为研究对象,评估了它们在5个室内泳池水及其消毒源水自来水中的浓度水平,测定了各类水质参数,并对水质参数与8种芳香族氯/溴代DBPs的浓度进行了相关性分析.结果表明,泳池水中自由余氯、氯胺、Br~-、I~-、各形态氮(总氮、氨氮、硝态氮、亚硝态氮)、DOC及UV_(254)等指标均普遍高于其源头自来水,且不同消毒方式的泳池水在这些水质参数上也呈现出一定的差异.在5个泳池水中,8种芳香族氯/溴代DBPs均有检出(检出限在0.08—0.64 ng·L~(-1)之间),且各泳池水中芳香族Cl-DBPs浓度明显高于Br-DBPs.无论是芳香族Cl-DBPs还是Br-DBPs,在臭氧和氯联合消毒的泳池水中的浓度均要低于只用氯消毒的泳池水.不同月份8种芳香族氯/溴代DBPs浓度差异较大,但它们在泳池水中的浓度均低于自来水中的浓度.水质参数中Br~-和I~-浓度与多种芳香族氯/溴代DBPs的生成呈显著正相关.  相似文献   

19.
气相色谱法快速测定2,4-二氯苯酚   总被引:5,自引:0,他引:5  
对于氯酚类的测定(如五氯酚等),尤其是国标方法,要经历酸化、数次萃取、萃取液合并、K2CO3纯化、衍生化(乙酸酐、重氮甲烷等)、浓缩、测定,过程相当复杂,本文基于Nernst分配定律,建立了一种液液萃取平衡.气相色谱(ECD)快速检测水中2,4-二氯苯酚(2,4-DCP)的方法.  相似文献   

20.
利用漆酶对2,5-二氯苯酚(2,5-DCP)、2,6-二氯苯酚(2,6-DCP)、2,4,5-三氯苯酚(2,4,5-TCP)、2,4,6-三氯苯酚(2,4,6-TCP)等4种物质进行去除研究,考察了温度、时间、pH及漆酶添加量对去除效果的影响,并基于最佳条件下的去除效果,探讨了底物结构对漆酶转化氯酚类物质的影响.结果表明,温度升高,去除率呈先升高后降低再升高的现象;pH增大,去除率有增加的趋势;漆酶添加量在一定范围内与去除率呈正相关,当添加量高于20%后,去除率降低;在较短时间(0.5 h)内,漆酶对4种氯酚类物质的去除均能达到较好的效果.最佳条件下,漆酶对2,5-DCP、2,6-DCP、2,4,5-TCP和2,4,6-TCP的去除率分别为86.2%、45.3%、98.7%、84.8%;氯原子取代位置与取代数目相比对去除效果具有更重要的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号