首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to theory, variation in plant secondary metabolism against herbivores is driven by variation in biotic and abiotic conditions interacting with plants genotype to determine the expression of resistance traits. Particularly, it has been long postulated that plants growing along latitudinal gradients experience changes in biotic and abiotic interactions, specifically leading to a decrease of plant toxicity towards the poles. We tested this hypothesis using the asteraceous species Smallanthus macroscyphus. Smallanthus species are known to contain sesquiterpene lactones (STLs), bitter compounds with a broad spectrum of biological activities, including deterrence to herbivores. S. macroscyphus showed a decrease in chemical diversity of STLs when investigating populations growing from the tropical regions to less tropical ones. Populations from lower latitudes were found to be more chemically diverse with enhydrin, uvedalin and fluctuanin as main components, while populations southward were chemically fairly uniform, with polymatin A as the main and largely dominant STL. The STL chemistry of S. macroscyphus is in agreement with the hypothesis that plants of tropical forests have a greater diversity of secondary metabolites when compared to their temperate counterparts.  相似文献   

2.
Allocation of resources to growth and defense against herbivores crucially affects plant competitiveness and survival, resulting in a specific distribution of assimilates and defense compounds within plant individuals. Additionally, plants rarely experience stable environmental conditions, and adaptations to abiotic and biotic stresses may involve shifts in resistance to herbivores. We studied the allocation of phytochemicals in Brassica oleracea (Brussels sprouts) due to leaf age, drought stress and herbivore damage and assessed effects on two lepidopteran herbivores differing in diet breadth: the generalist Spodoptera littoralis and the specialist Pieris brassicae. Glucosinolates as secondary defense compounds and total nitrogen and carbon were quantified and linked to plant palatability, i.e., herbivore feeding preference. Herbivore responses were highly species-specific and partially related to changes in phytochemicals. Spodoptera littoralis preferred middle-aged leaves with intermediate levels of glucosinolates and nitrogen over young, glucosinolate and nitrogen rich leaves, as well as over old leaves, poor in glucosinolates and nitrogen. In contrast, P. brassicae preferred young leaves. Both species preferred severely drought-stressed plants to the well-watered control, although analyzed glucosinolate concentrations did not differ. Both S. littoralis and P. brassicae feeding induced an increase of indole glucosinolate levels, which may explain a reduced consumption of damaged plants detected for S. littoralis but not for P. brassicae. By revealing distinct, sometimes contrasting responses of two insect herbivores to within-plant and stress-mediated intraspecific variation in phytochemistry of B. oleracea, this study emphasizes the need to consider specific herbivore responses to understand and predict the interactions between herbivores and variable plants.  相似文献   

3.
In response to insect herbivory, plants emit volatiles that are used by the herbivores’ natural enemies to locate their host or prey. Herbivore attack also enhances tea aroma. Herbivore-induced plant volatiles (HIPVs) vary both quantitatively and qualitatively with infestation duration and herbivore density. Thus, whether HIPVs can reliably communicate the identities of herbivores is of interest. Here, we studied the tea plant volatiles induced by the tea leafhopper (Empoasca vitis, a piercing–sucking insect), the tea geometrid (Ectropis oblique, a chewing insect), and methyl jasmonate (MeJA, a plant hormone). Geometrid feeding induced more complex volatile blends than did leafhopper infestation. The volatiles induced by both herbivores significantly increased in quality and quantity with time during the first 16 h of infestation, after which the profiles of induced volatile blends and the emission of induced compounds varied diurnally. (E)-β-Ocimene displayed a unique rhythm in which emission peaked at night. The amount of HIPVs significantly increased, while their profiles changed little, with herbivore density. Overall, the leafhoppers and geometrids induced significantly different volatiles from tea plants, while the HIPV profiles varied with a circadian rhythm and were similar at different herbivore densities. Our findings also suggest a new method of enhancing tea flavor using exogenously applied plant hormones, because the volatiles induced by leafhoppers and MeJA were similar in general composition.  相似文献   

4.
Herbivores tend to increase feeding rate and fitness when consuming a mixed diet relative to a single diet. According to the detoxification limitation hypothesis (DLH), feeding choices and rates when confronted with chemically rich plants are determined by herbivore physiology, and specifically by the metabolic pathways that herbivores use to manipulate secondary metabolites. We tested two predictions of the DLH using two generalist herbivores, the urchin Arbacia punctulata and amphipod Ampithoe longimana. These herbivores have geographic ranges which overlap with brown seaweeds that produce diterpenes (Dictyota menstrualis, D. ciliolata) and a green seaweed that produces sesquiterpenes and diterpenes (Caulerpa sertularioides). As predicted by the DLH, herbivore consumption rates in no-choice feeding assays were limited by extract intake rates. This suggests an upper limit in the herbivores’ abilities to physiologically manipulate seaweed metabolites. Contrary to a second prediction of the DLH, urchins consumed equal amounts of foods coated with limiting concentrations of two seaweed extracts offered singly, as a mixture, or as a pairwise choice. This result suggests that secondary metabolites of these seaweeds are manipulated by a linked set of detoxification pathways. Improving our understanding of the mechanisms that underlie diet mixing depends on greater attention to the physiology of herbivore resistance to secondary metabolites.  相似文献   

5.
Most woody plants contain a diverse array of plant secondary metabolites (PSMs) that deter vertebrate herbivores. However, mammalian folivores have evolved a complex of physiological and behavioural strategies to counter these compounds, leading to the development of an “evolutionary arms race”. Marsupial folivores are ideal models to investigate the role of PSMs in the interaction between the external foraging environment and the digestive physiology of mammalian herbivores, as we have a very strong understanding of the diversity and modes of action of PSMs in Eucalyptus, as well as the mechanisms by which animals overcome the effects of these compounds. Studies of marsupial folivores have benefited from the facts that: these herbivores subsist on relatively poor quality diets; they include feeding types from specialist species such as the koala, to generalists; and life history factors such as maternal investment in reproduction can be measured more easily than in eutherians. Here, we describe patterns of spatial variation in the types and distributions of plant secondary metabolites in Australian forests and discuss how this variation influences foraging behaviour, habitat selection and life history strategies in arboreal, folivorous marsupials. We also provide a summary of our understanding of the mechanisms by which marsupials detect and regulate their intake of toxic compounds. While our examples are drawn largely from studies of the interaction between marsupials and Eucalyptus, this knowledge is applicable to advancing our understanding of interactions in plant–mammal systems more broadly. We also identify and discuss key areas that should be the focus of future research.  相似文献   

6.
Because many secondary metabolites in plants act as defense against herbivores it has been postulated that these compounds have evolved under selective pressure by insect herbivores. One explanation for the within-species variation in metabolite patterns in a particular species is that different populations are under selection by different herbivores. We tested this hypothesis, using Arabidopsis thaliana plants that originated from dune and inland areas. We analyzed Arabidopsis thaliana leaves using NMR spectroscopy and multivariate data analysis. Major differences in chemical composition were found in water-methanol fractions and were due to higher concentrations of sinigrin and fumaric acid in dune plants. Inland plants showed lower levels of glucose. Quantitative analysis of glucosinolates was performed with HPLC. Individual plants and populations demonstrated differences in glucosinolate composition and concentration. In growth chamber experiments, the generalist herbivore, Spodoptera exigua grew significantly better on the inland plants, while the specialist herbivore Plutella xylostella performed equally well on plants of both origins. Aliphatic glucosinolate as well as total glucosinolate concentrations negatively correlated with larval mass of Spodoptera exigua. No significant correlations, however, were found between larval mass of Plutella xylostella and glucosinolates in the leaves. A specialist and a generalist herbivore were responding differently to plant secondary chemistry, as was also found in several other studies. This is an important indication that differences in glucosinolate concentrations among populations may result from differential selection by different guilds of herbivores.  相似文献   

7.
Brown algal polyphenolic compounds are secondary metabolites whose functions may include protecting plants from pathogens or damage by UV radiation, and deterring feeding by herbivores. We present here the first analysis of spatial variation (at scales from tens of meters to hundreds of kilometers) in concentration of these compounds in two orders of brown algae from the northeastern Pacific Ocean. In kelps (order Laminariales), variation among sites was significant in only 25% of species examined and was consistent within families (high in the Alariaceae and low in the Laminariaceae and Lessoniaceae). In rockweeds (order Fucales, family Fucaceae), site variation was high in three of four species examined. Both the proportion of high polyphenolic kelp species and the magnitude of spatial variation within species from both kelps and rockweeds were much higher than would have been predicted from previous studies in other regions. In one kelp (Laminaria groenlandica), significant differences between sites occurred at scales of only tens of meters. No latitudinal clines were observed. Differences in phenolic concentrations of kelps spanned nearly an order of magnitude in one species, Hedophyllum sessile. Phenolic levels were significantly higher in members of the Fucales than the Laminariales, but showed no significant differences between intertidal and subtidal species. Received: 22 July 1996 / Accepted: 26 October 1998  相似文献   

8.
Summary A sample of one-year-old seedlings of European white birch (Betula pendula) was analyzed to determine the content of sugars, phenolics and terpenoid compounds. Two vertical segments of each seedling were analyzed separately. The number of resin droplets, which correlates strongly and negatively with feeding by the mountain hare, was also counted on the bark of experimental seedlings. The variation in the palatability of birch seedlings to mountain hare was determined primarily by the most abundant terpenoid, papyriferic acid. On the other hand, the resistance to hare feeding at the seedling bases, which are frequently attacked by voles, appeared to be dependent on other components, apparently phenolic substances. Sugars did not affect the resistance of the tested seedlings. The variation among experimental seedlings was much greater for secondary substances, especially terpenoid compounds, than for sugars. It is suggested that this high variation in protective compounds may be an adaptive trait selected for by the feeding of generalist herbivores.  相似文献   

9.
Galerucella placida Baly (Coleoptera: Chrysomelidae) is a potential biocontrol agent of the rice-field weed Polygonum orientale L. (Polygonaceae). The volatile organic compound (VOC) profiles from undamaged and mechanically damaged plants, and from plants 12- and 36-h following continuous feeding of female G. placida adults and 2nd instar larvae were identified and quantified by GC–MS and GC-FID analyses. Twenty-four and 21 compounds were identified in volatiles of undamaged and insect feeding plants, respectively; whereas 22 compounds were detected in volatiles of mechanically damaged plants. Decanal and 1-dodecanol were unique to undamaged plants, and linalool was detected in volatiles of undamaged and mechanically damaged plants, but not in volatiles of insect damaged plants. However, the beetles are not attracted by none of these volatile components, when tested individually in Y-shaped glass tube olfactometer bioassays. In all plants, methyl jasmonate was predominant. 1-Undecanol was the least amount in undamaged plants, and plants 12-h after feeding by G. placida adults and larvae; whereas 1-tridecanol was the least abundant in plants 36-h after feeding by G. placida adults and larvae, and mechanically damaged plants. The beetles showed significant preference to the whole volatile blends from plants 12-h after feeding by larvae and plants 36-h after feeding by either larvae or adults compared to those of undamaged plants. Further, G. placida responded to individual synthetic compounds, 3-hexanol, 1-octen-3-ol, nonanal, and geraniol at 7, 1.38, 3.75 and 4.5 µg/25 µL CH2Cl2, respectively, and provide a basis for attraction of the potential biocontrol agent in the field.  相似文献   

10.
Non-random distribution patterns of specialized phytophagous insects on their hosts may depend on intraspecific differences in plant tissue quality, including nutrients and secondary compounds. Secondary compounds are involved in plant resistance, but are also important for the recognition and acceptability of plants as resources by specialized insects. If individuals within a plant species vary in their content of such secondary substances, there may also be qualitative differences between them. In such cases, natural selection will favor insects with the ability to distinguish and prefer the more suitable plants. In Sweden, the leaf beetle Gonioctena linnaeana Schrank (Coleoptera, Chrysomelidae) is highly specialized on one host, the native willow Salix triandra L (Salicaceae). Field observations reveal that some host plants in a population harbor many feeding larvae, causing severe defoliation, whereas neighboring plants may have few or no feeding larvae. Our hypothesis is that the distribution pattern of G. linnaeana larvae in this population results from qualitative differences between individual host plants in combination with the ability of G. linnaeana females to distinguish between plants that are suitable and not suitable for offspring performance. We examine whether larval survival differs depending on diet and whether the content of secondary chemical compounds explains female preference. Based on the higher survival rate of larvae reared on leaves from preferred hosts, we conclude that G. linnaeana females have evolved a behavior that maximizes offspring performance and thus positively affects female fitness. A chemical survey of the plants indicates that luteolin-7-glucoside and an unidentified flavonoid are important for separating the preferred from the non-preferred plants.  相似文献   

11.
Adult Anoplophora malasiaca beetles were collected from field populations inhabiting three different host plants: Citrus, Salix and Vaccinium. Male orientation responses towards odours of wounded branches of each host plant were examined. Males of all three populations were attracted most frequently to odours of their original hosts, indicating that male orientation behaviour was induced by the odours of the plants from which they were originally collected. We also observed the mating responses of the males to elytra extracts from young and mature females of the three populations and chemically analysed those extracts. Citrus males were highly responsive to female extracts, regardless of origin. Salix males were less reactive than Citrus males, but responded moderately to female extracts of all populations. Vaccinium males were never attracted to Citrus female extracts and responded more to extracts from mature Vaccinium and Salix females, indicating that males might distinguish female origin and maturity. All eight hydrocarbons, four ketones, and three lactones that were previously identified as female contact sex pheromones were found in the extracts of three populations and both ages. Higher amounts of lactones on mature females likely caused greater male responses. These results suggested that males would be more likely to approach a female feeding on the same host plant and subsequently recognise her sexual maturity based on the profile of contact sex pheromones on her elytra.  相似文献   

12.
Bacteria play important roles in plant–herbivore interactions and communicate with each other with chemical signals, often N-acylhomoserine lactones (AHL). Plant responses to these signals may influence resistance to microbial attack, but the effects of these signals on herbivore defense are unstudied. To determine whether AHL influence jasmonate (JA)-mediated herbivore resistance in Nicotiana attenuata, we treated wild-type (WT) and JA-deficient genotypes (antisense expression of NaLOX3) with N-hexanoyl-dl-homoserine lactone (C6-HSL) and measured the performance of Manduca sexta larvae. Larval mass gain on C6-HSL-treated WT plants was equivalent to that on non-treated NaLOX3-silenced plants, but significantly 4.1-fold larger than on untreated WT plants. Mass gain was unaffected by C6-HSL treatment of NaLOX3-silenced plants. Microarray analysis of the plants elicited with C6-HSL and JA inducing fatty acid–amino acid conjugates revealed a down-regulation of a proteinase inhibitor in the C6-HSL-treated WT plants. The results therefore suggest that the increased performance of M. sexta was due to direct or indirect effect of C6-HSL on JA-mediated defenses.  相似文献   

13.
Coniferous trees of different species, or of the same species growing at different locations, vary in the extent to which they are attacked by various herbivores and pathogens. Plant secondary metabolites might be a key to understanding some of this variation. At the site level, we investigated if there was an intra- or interspecies pattern for individual compounds (or for groups of compounds) and their relationship to indices of plant nitrogen and plant productivity. For example, do plants exhibit similar covariance in defence compounds when evaluated across a number of sites varying in productivity? Here, we concentrated on the phenolic profile of Pinus sylvestris, Picea abies, Juniperus communis and Pinus contorta. Our results indicate striking differences in secondary chemistry profiles of the twigs including needles of the trees and in the inter-relationships amongst individual compounds and groups of compounds. Flavonols occurred in high variety in P. sylvestris and were highly correlated with each other, differing from P. contorta. But the results of the factor analyses indicate an underlying pattern for flavonols of the coumaroyl type for P. contorta. In contrast, the compounds of the other tree species showed a low degree of inter-correlation. Co-occurring phenolics of different tree species were not correlated. Overall, our analysis of site indices indicated that plant productivity was not a useful predictor for the concentration of specific phenolics. The relationship amongst plant nitrogen and specific phenolics might be the result of two defence strategies (one related and the other not related to nitrogen content). This might enable the plant to shift its defences against attacks with a high degree of flexibility.  相似文献   

14.
The geographic mosaic theory of coevolution states that variation in species interactions forms the raw material for coevolutionary processes, which take place over large geographic scales. One key assumption underlying the process of coevolution in plant-herbivore interactions is that herbivores exert selection on their host plants and that this selection varies among plant populations. We examined spatial variation in the existence and strength of phenotypic selection on host plant resistance exerted by specialist herbivores in 17 archipelago populations of the perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). In these highly fragmented populations, V. hirundinaria is consumed by the larvae of two specialist herbivores: the folivorous moth Abrostola asclepiadis and the seed predator Euphranta connexa. Selection imposed on host plants by these herbivores was examined by analyzing the associations between levels of herbivory, plant fitness, and contents of a number of leaf chemicals reflecting plant resistance to and quality for the herbivores. We found extensive spatial variation in the levels of herbivory and in plant fitness. More importantly, the impact of both leaf herbivory and seed predation on plant fitness varied among plant populations, indicating spatial variation in phenotypic selection. In addition, leaf chemistry varied widely among plant populations, reflecting spatial variation in plant quality as food for the herbivores. However, leaf compounds influenced folivory similarly in all the studied plant populations, and interestingly, some of the compounds were associated with the intensity of seed predation. Finally, some of the leaf compounds were associated with plant fitness, and the strength and direction of these associations varied among plant populations. The observed spatial variation in the strength of the interactions between V. hirundinaria and its specialist herbivores suggests a geographic selection mosaic. Because the occurrence and strength of spatial variation varied between the two specialist herbivores, our results highlight the importance of considering multiple enemies when trying to understand evolution of interactions between plants and their herbivores.  相似文献   

15.
Insect herbivores often use chemical signals obtained from their food plants to deter enemies and/or attract sexual partners. Do plant-based visual signals act similarly, i.e., repel consumers' enemies and appeal to potential mates? We explored this question using the pollen-feeding beetle Pygopleurus israelitus (Glaphyridae), a specialized pollinator of Anemone coronaria's chemically defended red-morph flowers. We presented dead beetles, which had fed either on anemones or on cat food, to young domestic chicks on a red (anemone-like) or a green (leaf-like) background. We determined whether the beetles' background color and diet affected the chicks' feeding. Cuticle surface extracts from anemone-fed beetles, but not from cat food-fed beetles, contained a secondary metabolite characteristic of anemones. Latencies to the first picking up and consuming of beetles from green backgrounds were shorter than of beetles from red backgrounds. The picking up order of beetles also indicated that prey from the green background was preferred. The chicks retained this preference when re-tested, 3 days later. Handling times of anemone-fed beetles were longer than of cat food-fed beetles. A previous study showed that glaphyrids improve their mate-finding prospects by orienting to large red anemone flowers. Here, female beetles preferred cat food-fed to anemone-fed males in mate-choice assays, thus anemone-derived chemicals did not increase mating success. Instead, the combined results indicate that A. coronaria's red flowers provide a visual signal that may both deter its herbivore's predators and attract its mates. To our knowledge, this is the first experimental evidence for a potential protective role of plant-derived visual signals for insect herbivores/pollinators.  相似文献   

16.
Mody K  Unsicker SB  Linsenmair KE 《Ecology》2007,88(4):1012-1020
Generalist insect herbivores may profit by feeding on a mixture of plant species that differ in nutritional quality. Herbivore performance can also be affected by intraspecific host plant variation. However, it is unknown whether conspecific plant individuals differ sufficiently to promote diet-mixing behavior in specialist herbivores. We experimentally tested this "specialist diet-mixing hypothesis" for specialist caterpillars (Chrysopsyche imparilis, Lasiocampidae) in a West African savanna. The caterpillars switched regularly between host tree individuals (Combretum fragrans, Combretaceae). To examine whether switching benefited caterpillar performance via diet-mixing, the caterpillars were reared either on leaves from several plant individuals (mixed diet) or on leaves from a single plant. The strongest effect of diet-mixing was found for fecundity, with females reared on a mixed diet laying significantly more eggs than sisters receiving a single-plant diet. In addition, a mixed diet decreased variability in egg size and increased the growth of second-instar caterpillars. Supplementary food choice experiments were conducted to assess a potential influence of lowered host quality (induced by herbivory) on caterpillar behavior; no such effect was found. By linking intraspecific host-switching behavior and herbivore performance, this study provides new information on the relevance of intraspecific plant variation for herbivorous insects.  相似文献   

17.
Insect pollination and pollen feeding can reduce plant volatile emissions and future insect floral attraction, with oviposition having different effects. Meligethes aeneus F. (Coleoptera: Nitidulidae), is a pollen-feeding pest beetle of oilseed rape, Brassica napus L. (Brassicaceae). We measured plant VOC emission over 72 h from two types of 24 h M. aeneus exposure to B. napus: pollen feeding vs. flower bud injury and oviposition. The most abundant constitutive volatile organic compounds (VOCs), lilac aldehydes A (LA A) & B (LA B) and veratrole (VER), had 30–40 % reductions from M. aeneus pollen-feeding exposure at 24 h and 50–90 % reductions by 72 h, with greater reductions after bud injury and oviposition. Linalool (LIN), a common herbivore-induced plant volatile (HIPV), emission did not change at 24 h, but was induced six- to sevenfold 48 h after both exposure treatments. By 72 h, LIN had even greater (tenfold) induction after bud injury and oviposition, but no induction from pollen feeding. Three common HIPVs (β-caryophyllene, = βCAR (E)-β-farnesene = EβFAR, and (Z)-β-ocimene = ZβOCI) were progressively induced up to 2.5-fold 72 h after floral bud injury and oviposition. We assayed M. aeneus adult behavioral responses to LA A and B, and VER. Both M. aeneus sexes were attracted to higher concentrations than single plant constitutive emission for these VOCs, but avoided much higher doses. Progressive LA A and B, and VER, emission reductions might help plants (e.g., B. napus) to avoid future interactions with pollen-feeding pest herbivores (e.g., M. aeneus). After bud injury and oviposition, HIPV induction could help plants deter future oviposition and/or attract natural enemies to deposited eggs.  相似文献   

18.
Plant–insect interactions, which are strongly mediated by chemical defenses, have the potential to shape invasion dynamics. Despite this, few studies have quantified natural variation in key defensive compounds of invasive plant populations, or how those defenses relate to levels of herbivory. Here, we evaluated variation in the iridoid glycosides aucubin and catalpol in rosette plants of naturally occurring, introduced populations of the North American invader, Verbascum thapsus L. (common mullein; Scrophulariaceae). We examined two scales that are likely to structure interactions with insect herbivores—among populations and within plant tissues (i.e., between young and old leaves). We additionally estimated the severity of damage incurred at these scales due to insect chewing herbivores (predominantly grasshoppers and caterpillars), and evaluated the relationship between iridoid glycoside content and leaf damage. We found significant variation in iridoid glycoside concentrations among populations and between young and old leaves, with levels of herbivory strongly tracking leaf-level investment in defense. Specifically, across populations, young leaves were highly defended by iridoids (averaging 6.5× the concentration present in old leaves, and containing higher proportions of the potentially more toxic iridoid, catalpol) and suffered only minimal damage from generalist herbivores. In contrast, old leaves were significantly less defended and accordingly more substantially utilized. These findings reveal that quantitative variation in iridoid glycosides is a key feature explaining patterns of herbivory in an introduced plant. In particular, these data support the hypothesis that defenses limit the ability of generalists to feed on mullein’s well-defended young leaves, resulting in minimal losses of high-quality tissue, and increasing performance of this introduced species.  相似文献   

19.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

20.
In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focuses on the dynamics of induced plant responses induced by single and double herbivory, and their effects on successive herbivores. Morphological (leaf length, area and trichome density) and chemical changes (leaf alkenyl and indole glucosinolates) in Brassica juncea were evaluated 4, 10, 14 and 20 days after damage by the specialist Plutella xylostella alone, or together with the generalist Spodoptera litura. To assess the biological effect of the plant’s responses, the preference and performance of both herbivores on previously induced plants were measured. We found that alkenyl glucosinolates were induced 20 days after damage by P. xylostella alone, whereas their levels were elevated as early as 4 days after double herbivory. Trichome density was increased in both treatments, but was higher after double herbivory. Interestingly, there was an overall decrease in indole glucosinolates and an increase in leaf size due to damage by P. xylostella, which was not observed during double damage. S. litura preferred and performed better on undamaged plants, whereas P. xylostella preferred damaged plants and performed better on plants damaged 14 and 10 days after single and double herbivory, respectively. Our results suggest that temporal studies involving single versus multiple attacker situations are necessary to comprehend the role of induced plant responses in plant–herbivore interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号