首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
Fenton试剂氧化降解微囊藻毒素-LR   总被引:5,自引:0,他引:5  
研究了Fenton试剂氧化降解微污染水体中微囊藻毒素MC-LR的效果,在H2O2浓度1.5mmol·l-1,Fe2 浓度0.10 mmol·l-1,反应温度为25±1℃,pH值为4.18及反应时间为30min的条件下,浓度为0.41mg·l-1的MC-LR去除率可以达到92.4%,降解过程符合准一级反应动力学.Fenton试剂氧化体系能有效地降解MC-LR,特别是在紫外光的照射下,MC-LR的降解速率得到大幅度提高.紫外光能促进Fe3 还原为Fe2 ,所以光助Fenton试剂氧化反应中可以使用Fe3 代替Fe2 .  相似文献   

2.
Fenton法和类Fenton法降解土壤中的二苯砷酸   总被引:1,自引:0,他引:1  
本文对Fenton法与类Fenton法降解土壤中的二苯砷酸(diphenylarsinic acid,DPAA)进行了研究.考察了H2O2投加量和催化剂种类(Fe2+/Fe3+)对红壤及黑土中DPAA降解效果的影响,并采用高效液相色谱-质谱联用法(HPLC-MS/MS)对降解中间产物进行了初步鉴定.结果显示,针对红壤与黑土分别采用类Fenton法与Fenton法,在H2O2投加浓度为1 mol·L-1,含铁催化剂浓度为0.25 mol·L-1,土水比为1∶3,反应时间为1h的条件下,红壤及黑土中DPAA的降解率均可达到65%以上.HPLC-MS/MS的分析结果表明,DPAA可脱苯环形成降解产物苯砷酸(phenylarsinic acid,PAA),而PAA进一步氧化生成无机砷,这可能是Fenton/类Fenton法降解DPAA的途径之一.  相似文献   

3.
垃圾渗滤液的Fenton氧化预处理研究   总被引:5,自引:0,他引:5  
朱兆连  孙敏  王海玲  张雪英  李爱民 《生态环境》2010,19(10):2484-2488
采用Fenton氧化法对垃圾渗滤液进行预处理,考察了渗滤液初始pH值、H2O2和FeSO4.7H2O投加量、H2O2/Fe2+投加的物质的量比及氧化反应时间等对Fenton氧化处理效果的影响,获得Fenton氧化处理垃圾渗滤液的最佳工艺条件:初始pH=3.0,H2O2投加量为5.0 mL.L-1,FeSO4.7H2O投加量为3.48 g.L-1,H2O2/Fe2+物质的量比为4-1,反应时间为1.5 h。最佳条件下处理后垃圾渗滤液COD为5 220 mg.L-1,COD去除率达57.8%。凝胶渗透色谱和三维荧光光谱分析结果表明,垃圾渗滤液中主要含有腐殖酸类大分子物质,经Fenton氧化后降解变成小分子化合物。  相似文献   

4.
酸性条件下,采用Al0-O2体系对活性黄3RS染料溶液进行降解,考察了活性黄3RS的初始浓度,p H、Al0的浓度、温度、Fe2+浓度等因素对其降解率的影响.结果表明,在p H=2和Al0浓度为1 g·L-1时,对50 mg·L-1活性黄3RS的降解率最高,反应150 min时最高可获得92%的降解率;降解后其COD值由126.35 mg·L-1降至49.44 mg·L-1;温度升高,活性黄3RS的降解率提高,其表观反应活化能为108.262 k J·mol-1;动力学分析表明该过程为一级反应,反应速率常数kobs=1.2×10-2s-1;当向体系中加入Fe2+时,其降解速率加快.  相似文献   

5.
Fenton氧化法处理生物性污染废水   总被引:2,自引:0,他引:2  
采用Fenton氧化法对经化学混凝沉淀处理后的生物性污染废水进行深度处理,通过正交试验和单因素实验,研究H2O2投加量、溶液pH值、反应时间和H2O2/Fe2+2(摩尔比)四个主要因素对有机污染物去除效果的影响.实验结果表明H2O2投加量的影响明显高于其它三个因素,影响能力从大到小依次排序为:H2O2投加量>溶液pH>反应时间>H2O2/Fe2+,反应的最佳工艺条件为:H2O2投加量为0.088mol.l-1,溶液pH值在3.5左右,反应时间为4h,H2O2/Fe2+为20:1.在此条件下,经Fenton氧化法深度处理后的出水细菌总数和三磷酸腺苷均未检出,保障出水的生物卫生安全性;同时其相对抑光率为10%,属低水平毒性.此外,其化学需氧量小于76mg·l-1,氨氮、总氮、总磷分别为1.10mg·l-1,2.92mg·l-1和0.002mg·l-1,出水满足<城镇污水处理厂污染物排放标准(GB8918-2002)>一级B标准.  相似文献   

6.
杨丽娟  胡翔  吴晓楠 《环境化学》2012,31(12):1896-1900
采用Fenton法降解水中布洛芬,考察了H2O2投加量、FeSO.47H2O与H2O2的比值、初始pH、反应时间等因素对布洛芬去除率的影响,通过正交实验确定影响作用大小依次为:[Fe2+]∶[H2O2]的物质的量之比>H2O2的投加量>pH值,最佳的反应工艺条件为:H2O2的投加量为3 mL.L-1,[Fe2+]∶[H2O2]的物质的量之比为1∶10,反应初始pH值为3,反应时间为40 min.在最佳条件下布洛芬的去除率达到86%以上.同时对布洛芬降解反应动力学进行了研究,发现Fenton降解布洛芬符合二级反应动力学规律.  相似文献   

7.
水体中微污染磺胺嘧啶光催化降解行为   总被引:5,自引:0,他引:5  
抗生素在人体健康和畜牧业生产中起到了积极的作用,但是未被完全吸收和利用的抗生素或其代谢物将通过尿液、粪便排泄等途径进入水体,对水环境的生态安全性及人体健康构成威胁,因而,痕量抗生素在环境中的出现及其潜在危害引起了越来越多的关注.对使用较为广泛的广谱抗菌剂磺胺嘧啶(SDZ)在水中的光催化氧化降解行为进行研究,探讨了反应过程中光照、TiO2的用量、反应起始pH、SDZ的初始质量浓度、反应时间等因素对SDZ降解效率的影响.研究结果表明,SDZ降解符合一级动力学规律,当pH=6.7、SDZ初始质量浓度为2.O mg·L-1、TiO2用量为80 mg·L-1、反应时间为60 min时,SDZ的降解率达到99.9%.结果表明,UV-TiO2光催化氧化能够有效降解水中的磺胺类微污染物.  相似文献   

8.
采用厌氧反应装置,接种取自UASB反应器的硫酸盐有机废水厌氧处理颗粒污泥,以人工配制的含硫酸盐有机废水(蔗糖提供有机物)为原水,分别添加不同质量浓度的微量金属(Fe2+、Co2+、Ni2+),通过间歇试验,研究了不同质量浓度的微量金属(Fe2+、Co2+、Ni2+)条件下,厌氧反应装置中COD和硫酸盐的去除率及产甲烷情况。试验结果表明,在Fe2+质量浓度0~12 mg·L-1、Co2+质量浓度0~0.5 mg·L-1、Ni2+质量浓度0~0.6 mg·L-1范围内,厌氧颗粒污泥的COD去除率和产甲烷速率分别随Fe2+、Co2+、Ni2+浓度的增加而增高。在Fe2+质量浓度0~12 mg·L-1范围内,厌氧颗粒污泥对SO42-去除率随Fe2+浓度的增加略有增高,但在Co2+质量浓度0~0.5 mg·L-1、Ni2+质量浓度0~2.0 mg·L-1范围内,厌氧颗粒污泥的SO42-去除率分别随Co2+和Ni2+浓度的增加而降低。因此,在一定浓度范围内,Fe2+的投加能同时激活MPB和SRB,Co2+和Ni2+的投加能激活MPB但对SRB活性产生抑制作用,为硫酸盐有机废水厌氧处理提供一定的理论指导。  相似文献   

9.
Fenton溶液预处理对TiO2纳米管催化活性的影响   总被引:1,自引:0,他引:1  
刘翠云  傅大放 《环境化学》2012,31(4):429-436
采用Fenton溶液对TiO2纳米管电极进行预处理,研究其对TiO2纳米管催化活性的影响,考察了Fenton溶液的浓度、配比和处理时间等影响因素,研究了Fenton预处理过程中溶液中二价铁和总铁的含量变化,运用X射线光电子能谱仪(XPS)和场发射扫描电子显微镜(FESEM)对TiO2纳米管电极进行了表征,初步探讨了经处理后TiO2纳米管催化活性再生或增强的机理.结果表明,经Fenton溶液处理后的TiO2纳米管催化活性有明显地提高,Fenton溶液浓度越高,TCs降解率越大(相应于TiO2纳米管催化活性的增强);在一定浓度范围内,H2O2的配比高低对TCs降解率影响较大,其所占比例高,则降解率高,而Fe2+配比高低对TCs降解率影响相对较小.在Fenton溶液处理过程中,溶液中剩余的Fe2+含量较为恒定,总铁的含量呈下降趋势.XPS分析表明,经Fenton溶液处理后,TiO2纳米管电极表面C1s含量降低,O1s、Fe2p含量增大;部分含碳官能团含量明显降低,O1s的电子结合能向高能端位移.  相似文献   

10.
用紫外-可见分光光度法研究了水溶性金属卟啉Fe(TPPS)Cl催化H2O2氧化降解2,4,6-三氯苯酚(TCP)的动力学(TPPS为四(4-磺酸钠苯基)卟啉),探讨了反应体系酸度、H2O2/Fe(TPPS)Cl物质的量之比、温度对氧化降解速率的影响,提出了反应机理,建立了反应动力学数学模型.研究结果表明,TCP初始浓度为3.8×10-4 mol.L-1、Fe(TPPS)Cl浓度为4.0×10-5 mol.L-1、H2O2浓度为1.8×10-3mol.L-1、温度为25℃、pH值为6.8、反应时间为90 min时,TCP的降解率可达到99%,其表观活化能为10.96 kJ.mol-1.因此,Fe(TPPS)Cl作为模拟过氧化物酶在催化降解TCP过程中是一种有效的催化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号