首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
研发具有既能吸附NO_3~-同时又能缓释碳源的材料对提高反硝化效率具有重要意义.本研究制备了3种不同的NO_3~-离子吸附剂:改性美人蕉(MCL)、改性稻秆(MRS)和改性花生壳(MPS),采用SEM、红外光谱和元素分析仪对其性能进行分析和表征,并考察了几种材料的NO_3~-吸附效果和释碳效果.研究结果表明,在20℃,pH值为6.72时,1 g·L~(-1) MCL、MRS和MPS对25 mg·L~(-1) NO_3~-的去除率分别可达56.5%、65.85%和65.72%;伪二级动力学方程能更好地描述吸附过程;Langmuir模型(R~20.99)能更好地拟合它们的等温吸附过程;MCL、MRS和MPS对NO_3~-的吸附量随温度升高而降低,在25℃下最大吸附量分别为27.17、29.85、29.59 mg·g~(-1);通过热力学计算,MCL、MRS和MPS对NO_3~-的吸附是放热、自发的过程;实验5 d后3种吸附剂的释碳量分别稳定在50、60、88 mg·(g·L·d)~(-1)左右.由此可见,3种吸附剂均具有作为反硝化固相碳源的潜力.  相似文献   

2.
迄今为止,水环境的BTEX(苯系物)污染仍然是一个尚未解决的环境问题,研究在水位波动条件下BTEX在土壤介质中的运移过程是充分了解BTEX对水环境影响的前提.本实验以甲苯为污染物,建立了土壤水环境中有机污染物运移实验模型,并通过控制砂柱饱和-非饱和状态转化来实现土壤所处环境(水位波动条件或饱水条件)的不同,对比研究了两种条件对污染物运移和相关的水文地球化学特征的影响.利用中砂、细砂、含10%黏土的细砂等3种土壤介质的实验数据对实验模拟进行验证.结果显示,在水位波动条件下中砂、含10%黏土的细砂介质中甲苯的衰减速率(6.4 mg·L~(-1)·d~(-1)、5.3 mg·L~(-1)·d~(-1))均大于饱和条件下甲苯的衰减速率(0.57 mg·L~(-1)·d~(-1)、0.59 mg·L~(-1)·d~(-1)).水位波动条件对水环境电导率没有影响,但甲苯的加入使水环境的pH升高.甲苯和地下水位波动的共同作用推迟了地下水环境中NO_3~-、SO_4~(2-)和NO_2~-达到平衡的时间.  相似文献   

3.
地下渗滤系统(subsurface wastewater infiltration system,SWIS)是一种生态化的污水处理技术模式,在处理小水量、分散污水方面具有较为明显的技术优势,例如管理简单、运行费用低、兼具生态服务功能等。SWIS对污水中氮的去除主要依靠微生物硝化-反硝化作用,脱氮效果受内外部条件因子制约。当基质层内部溶解氧含量不足、NO_2~-积累、氧化亚氮还原酶活性受到抑制时,硝化和反硝化过程均可释放N_2O气体。进水水质、操作条件、温度等因素影响N_2O释放量和转化率。利用原位实验平台,采用静态箱-气相色谱分析方法,以实际生活污水为研究对象,分析了进水氮负荷波动条件下SWIS中N_2O产率、转化率和释放周期的变化规律。研究表明,进水氮负荷显著影响SWIS除污效率、N_2O产率和转化率。随着进水氮负荷由1.6 g·m~(-2)·d~(-1)增至7.2 g·m~(-2)·d~(-1),出水COD、NH_4~+-N、TN质量浓度分别由(9±3)、(0.4±0.1)、(1.5±0.11)mg·L~(-1)升高到(70±7)、(11.0±1.0)、(15.4±0.4)mg·L~(-1);N_2O产率与转化率表现出先升高后降低的趋势,其中,N_2O产率可高达(60.6±2.0)mg·m~(-2)·d~(-1),同时,进水总氮(转化率1.33%±0.03%)转化成N_2O逸出系统;随着系统落干时间的延长,N_2O产率呈下降趋势。综合考虑处理能力、出水水质和N_2O释放量,建议在工程应用中,选用具有一定脱氮能力的前处理工艺,控制SWIS进水氮负荷在4.0~5.6g·m~(-2)·d~(-1)之间,且适当延长SWIS干化周期。此时,出水水质满足城市景观地表水水质标准(GB/T18921—2002),N_2O产率和转化率均维持在较低水平。  相似文献   

4.
通过建立反硝化同时甲烷化(SDM)扩展模型,动态模拟ZnO-NPs对酸化菌、产甲烷菌和反硝化菌的抑制作用.结果表明,该模型能较好地用于分析ZnO-NPs对SDM体系的抑制作用,主要表现为底物利用速率的抑制.在ZnO-NPs的抑制效应上产甲烷菌比反硝化菌更敏感.添加50、100、200 mg·L~(-1)的ZnO-NPs使甲烷量分别降为对照的96.2%、79.9%、62.8%,但氮气产量未受影响.结合遗传算法和回归拟合,对生化过程底物利用速率和抑制性常数进行估计,得到:KI,NO_2=0.00007KI,NO_3=0.042;KI,ZnO,bu=0.094KI,ZnO,pro=0.10KI,ZnO,ac=4.45,证实了NO_2~-对产甲烷菌的抑制强于NO_3~-,ZnO-NPs对酸化菌的抑制强于产甲烷菌.  相似文献   

5.
添加生物炭对猪粪好氧堆肥过程氮素转化与氨挥发的影响   总被引:3,自引:0,他引:3  
为了减少好氧堆肥过程中氮素的损失,研究添加生物炭对猪粪好氧堆肥过程中氮素转化和损失的影响。设置不加生物炭对照(S1)以及猪粪秸秆中添加5%(S2)、10%(S3)、15%(S4)生物炭4个处理,监测堆肥过程中堆肥温度、氮素形态及氨挥发速率等的变化。结果表明,与对照相比,添加生物炭能够提高堆肥温度,提前2—3d进入高温期,缩短堆肥周期,提高堆肥品质。生物炭显著增加猪粪堆肥NO_3~--N的含量,降低了NH_4~+-N的含量,有利于NH_4~+-N向NO_3~--N转化;堆肥结束时,处理S2、S3和S4的NO_3~--N含量分别比对照提高了39.64%、46.68%和28.84%;添加生物炭明显降低了堆肥在高温期的氨挥发速率,且氨挥发累积排放量分别比对照降低了18.77%、25.35%和26.39%。与堆肥前相比,S1—S4总氮的增加率分别为9.7%、27.5%、28.6%和26.2%,添加10%生物炭的处理固氮效果最好。以上结果说明,猪粪堆肥过程添加生物炭更易促进堆肥腐熟、抑制氨气挥发和减少氮素损失,通过合理物料配比的好氧堆肥可以更有效地实现农业秸秆及猪粪的优质资源化利用。  相似文献   

6.
奶牛粪条垛式模拟堆肥腐熟度及微生物群落结构变化   总被引:3,自引:0,他引:3  
为降低堆肥成本、促进资源化利用和集约化养殖场奶牛粪污处理,采用小型堆肥反应器,研究利用奶牛粪污压榨残渣进行无辅料添加条垛式堆肥的可行性.堆肥过程中监测物料温度和各种理化指标的变化,并跟踪解析微生物群落.条垛式模拟堆肥共持续75 d,肥堆温度维持50℃以上达10 d,水分含量逐渐降低.pH在开始阶段略有增加后最终降低到约8.0.有机物降解率在堆肥前30 d迅速增加,而后逐渐增加到57.8%,C/N随着有机物的降解降低到9.75.NH_4~+在堆肥进行20 d后显著降低,由于硝化作用NO_3~-逐渐增加,最终产品中未检测到NH_4~+,NO_3~-含量达到2 208.8 mg/kg(干重).堆肥结束时物料的电导率为2 250.8μS/cm,低于文献推荐限值3 000μS/cm;成熟堆肥的种子发芽指数达到120.4%.高通量测序结果显示,微生物群落结构在堆肥前期发生了显著变化,堆肥后期则保持相对稳定,氨氧化细菌Nitrosococcus和硝化细菌Nitrolancea、Nitrospira进行了NH_4~+向NO_3~-的转化,堆肥19 d后硝化细菌占总细菌的比例达2%以上.综上,条垛式堆肥适合处理奶牛粪渣,可在无辅料添加情况下达到理想的堆肥效果,成熟堆肥质量优良.(图10表1参25)  相似文献   

7.
在四氧化三铁表面采用原位化学氧化合成了磁性聚吡咯(Ppy/Fe_3O_4)吸附剂,并用FTIR、XRD、TGA、XPS以及VSM等对材料进行表征.结果表明,聚吡咯成功包覆到Fe_3O_4表面,且具有超顺磁性.吸附实验结果表明,Ppy/Fe_3O_4对水中硝酸盐(NO_3~-)具有较好的吸附性能,在NO_3~-初始浓度为50 mg·L~(-1)条件下,当pH值为4.2时,温度为25℃下吸附剂对NO_3~-的吸附效果最佳,最佳吸附量为37.57 mg·g~(-1),阴离子的存在对NO_3~-吸附具有抑制作用.Ppy/Fe_3O_4对NO_3~-的吸附可以通过Langmuir模型很好地描述,吸附过程服从拟二级动力学,并且吸附速率随着NO_3~-初始浓度的增加而增加.磁性聚吡咯通过表面质子化氮与NO_3~-之间的静电作用而达到去除的目的.吸附饱和的吸附剂可以很好地进行磁性分离,并可以在0.01 mol·L~(-1)的NaCl溶液中进行脱附再生.  相似文献   

8.
化肥和农药的施用导致中国的地下水中硝酸盐氮和农药污染同时存在,并成为威胁人体健康的重要因素之一。其中氯酚类物质是一类常见的农药,具有高毒性和难降解性。目前,关于固相反硝化用于硝酸盐氮和对氯苯酚同时去除的研究较少,并且对微生物群落结构演变情况的分析还鲜见报道。论文以聚羟基丁酸戊酸共聚酯(PHBV)为反硝化固体碳源,通过序批试验研究同步去除硝酸盐氮和对氯苯酚的效果,并探讨对氯苯酚的加入对反硝化速率的影响;利用末端限制性长度多态性分析(T-RFLP)技术,使用Alu I酶切总细菌16S r RNA,研究对氯苯酚的存在对微生物群落的影响。结果表明,(1)在50 mg·L-1的硝酸盐氮(NO3--N)的浓度水平下,对氯苯酚(4-CP)的加入前后,硝酸盐氮(NO3--N)的去除率为(97.5±1.2)%和(95.3±1.7)%,总体上使去除效果略有降低;在10 mg·L-1的质量浓度水平下,对氯苯酚24 h的平均去除率为45.4%,其去除85.5%是由于微生物的降解作用引起的。(2)从对氯苯酚的加入到第45天的时间内,反硝化速率表现为先下降后上升,说明对反硝化速率起到先抑制后促进的作用。(3)在对氯苯酚加入前后45 d内,系统微生物群落结构发生明显的变化,趋向于多样化和均匀化。  相似文献   

9.
白酒生产过程中伴随高氮废水的产生,其中包含氨氮(NH_4~+-N)、硝氮(NO_3~--N)和亚硝氮(NO_2~--N),企业基于现有的曝气等工艺可以去除NH_4~+-N,但却难以有效去除NO_2~--N和NO_2~--N,导致总氮(TN)含量无法达到新标准(TN 20 mg/L),因此高效去除废水中的NO_3~--N和NO_2~--N成为当下的研究热点.采用上流式厌氧污泥床(up-flow anaerobic sludge blanket,UASB)生物反应器驯养活性污泥,形成稳定的微生物群系;筛选得到最佳碳源,构建了生物厌氧反硝化脱氮体系,并通过三代全长16S rRNA测序分析了体系的细菌群落结构.结果显示,在甲醇、乙酸钠、丁二酸钠、葡萄糖、酒厂原水、柠檬酸钠和MicroC多种碳源中,MicroC效果最佳,在处理高硝氮废水(NO_3~--N=531 mg/L)时,添加量为C/N=1.0,出水的NO_3~--N含量小于1 mg/L,NO_3~--N去除率达98%,COD去除率超过90%.该体系中,反硝化前期斯氏假单胞菌(Pseudomonas stutzeri)和硫杆菌(Thioclava sp.)是优势种,还原大量的NO_3~--N,而细菌多样性较低;反硝化后期微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)变成优势种,还原残留的NO_3~--N.本研究表明以MicroC为碳源的厌氧反硝化体系可实现酒厂高硝氮废水低成本且高效率的脱氮处理,物种Pseudomonas stutzeri发挥主要的反硝化作用,结果对反硝化工程有重要的指导意义.(图8表3参30)  相似文献   

10.
铁氧化氨反应是最近发现的一种新型氮转化途径,在林地、水稻田和湿地土壤氮循环过程中具有重要作用。然而,鲜有研究关注富营养化湖泊沉积物中的铁氧化氨过程。该研究在调查太湖梅梁湾沉积物理化性质和主要铁还原菌丰度的基础上,采用同位素示踪技术和C_2H_2抑制法研究了沉积物的铁还原速率和铁氧化氨过程,以实验过程中~(30)N_2和~(29)N_2的产生速率核算了沉积物的铁氧化氨速率。通过考察沉积物相关理化性质、铁还原菌丰度与铁氧化氨速率之间相关性,确定了这些因子对铁氧化氨的影响。结果表明:在太湖梅梁湾4个采样点的沉积物中均存在铁氧化氨过程,该过程能够在厌氧条件下将NH_4~+直接氧化为N_2,或者将NH_4~+氧化为NO_2~-、NO_3~-,然后厌氧氨氧化或反硝化过程将NO_2~-、NO_3~-转化为N_2导致沉积物氮损失。梅梁湾沉积物铁氧化氨速率范围为0.28~0.43 kg~(-1)·d~(-1),占太湖人为输入无机氮的6.1%~9.4%。沉积物Fe(Ⅲ)含量和TOC含量与铁氧化氨速率之间呈显著相关性(P0.05),在铁氧化氨过程中起重要作用。相反,pH与铁氧化氨之间无显著相关性(P0.05)。地杆菌属(Geobacteraceae spp.)、希瓦氏茵属(Shewanella spp.)、酸微菌科(Acidimicrobiaceae)及微酸菌A6属(Acidimicrobiaceae A6)与铁氧化氨呈显著相关性(P0.05),表明铁还原菌可能直接参与铁氧化氨过程。综上,铁氧化氨是富营养化湖泊沉积物中氮素迁移转化的重要途径之一。  相似文献   

11.
地下水有氧反硝化的固态有机碳源选择研究   总被引:7,自引:0,他引:7  
目前生物反硝化多采用液态有机碳源,如甲醇、乙醇等,而对富含有机碳的固态有机碳源研究较少.选取4种农业废弃物:麦杆、稻草、木屑、稻壳作为反硝化细菌的碳源,以菜园土和白蚁侵蚀过的木条为接种物的有氧条件下,研究了含100 mg·L-1 NO3-废水的氮去除情况.研究结果表明充填麦杆和稻草的反应具有较好的反硝化效果,且最终无NO2-的积累;反应过程中无NH4 的产生;pH值随反硝化进行而略有升高,随反硝化结束而趋于定值.因此,麦杆和稻草可作为进一步反应的固态有机碳源.  相似文献   

12.
以制药污泥为研究对象,采用葡萄糖、蔗糖、玉米秸秆粉及其混合物作为外加碳源,研究不同类型的外加碳源对堆肥系统一次发酵周期内温度、有机质等理化参数变化及青霉素的降解情况的影响.结果表明,堆体中有机质含量与外加碳源的量呈正比,堆体中有机质的质量分数随堆肥时间不断下降且趋于稳定.温度是青霉素降解的主要影响因素.外加碳源增加了堆体溶解性有机质质量分数,生物可利用碳源的增加促进了堆肥过程中微生物的转化作用,并有助于提高堆肥过程温度.在堆肥周期内外加碳源可以提高青霉素的降解速率(15 d内对照组青霉素降解率为94.44%,其他组均大于95%),且外加蔗糖与玉米秸秆粉的混合碳源处理组青霉素降解速率最快(15 d内降解率可达到99.08%).堆肥过程中升温阶段(中温阶段和高温阶段)青霉素含量与温度呈负相关(P0.01),与溶解性有机碳呈正相关(P0.01).15 d内所有处理组青霉素降解率均可以达到90%以上.  相似文献   

13.
滇池是中国富营养化状态最为严重的湖泊,而入湖河流氮磷元素的输入是其主要原因。河流水质的低C/N特征是限制氮素去除的关键因素,采用固相反硝化技术能够为反硝化过程提供持续的碳源,因而能够强化受污染河流的脱氮效果。以滇池的重点控制入湖河流-新运粮河为研究对象,设计了微曝气生物滤池(Biological aerating filter,BAF)-固相碳源反硝化(Solid-phase denitrification,SPD)组合工艺,在河道旁路展开示范工程研究。组合工艺设计规模为800 m3·d-1,BAF(气水比为3∶1~5∶1)和SPD生物滤池的最大表面水力负荷分别为4.2和1.4 m3·m-2·h-1,其中SPD生物滤池采用新型固相碳源共混可生物降解聚合物与惰性载体共混作为生物膜载体。工艺研究结果表明,在BAF气水比为3∶1~5∶1、HRT为0.5~1 h和SPD滤池HRT为0.5~1 h的运行工况下,BAF对NH4+-N的平均硝化率达到了91.27%,SPD滤池的平均反硝化率93.60%,工艺出水NH4+-N、NO3--N和NO2--N平均浓度分别为0.68、0.70和0.02 mg·L-1。示范工程对各项污染物的去除效果良好,对TN、TP和CODCr的去除率分别达到84.93%、50.15%和31.39%;工艺出水TN、TP和CODCr平均浓度分别为1.75、0.20和22.96 mg·L-1,主要水质指标均达到了地表水V类水质标准。采用新型固相碳源填充的反硝化生物滤池强化了工艺针对低C/N水质特征污染水体的脱氮效果,组合工艺对滇池氮素输入控制具有重要的意义。  相似文献   

14.
为了解南京北郊大气颗粒物中含氮二次水溶性离子组分特征,2014年冬春两季使用Anderson 9级采样器对南京北郊大气颗粒物进行分级采样,利用离子色谱仪分析得到了各粒径范围颗粒物中的含氮二次无机组分质量浓度,结合能见度、相对湿度、颗粒物浓度等观测数据探讨了不同天气状况下大气颗粒物中含氮二次水溶性离子组分的含量及其粒径分布特征。结果表明:冬季和春季平均PM_(2.5)质量浓度分别达到了80.81μg·m~(-3)和52.57μg·m~(-3),明显超过二类标准限值。PM_(10)中NO_3~-和NH_4~+表现出较好的一致性,相关系数高达0.92,表明两种离子的来源比较相似;NO_2~-与NO_3~-和NH_4~+均呈现明显的负相关关系。就季节平均而言,冬季NO_3~-和NH_4~+质量浓度明显高于春季,尤其在0.43~2.1μm粒径范围内,这与冬季二次细颗粒物污染加剧有关;其他粒径段的浓度值季节差异不明显。不同能见度下,NO_3~-和NH_4~+质量浓度谱均呈三峰分布;当水平能见度3 km时,NO_3~-和NH_4~+最大谱峰大多在9.0~10μm粗粒径段;能见度降至3 km以下时,谱最大峰值出现在1.1~2.1μm粒径段。能见度水平越低,NO_3~-和NH_4~+的质量浓度越高,表明随着NO_3~-和NH_4~+浓度增加气溶胶的消光作用有所增强,从而导致能见度降低。霾天细模态中NH_4~+和NO_3~-的浓度较非霾天明显增加,粗模态无明显变化。NO_2~-作为中间产物其性质极不稳定,谱分布也比较复杂,但任何天气状况下均在粗粒径段出现高峰值。  相似文献   

15.
潮汐流人工湿地(Tidal flow constructed wetland,TF-CW)是一种新型人工湿地生态系统,并且在氮去除方面受到了广泛的关注。通过对比4种不同进水方式TF-CW对NH4+-N和NO3--N两种氮形态的处理效果,并分析基质硝化反硝化强度与去除效果之间的相关性以及不同处理深度基质的硝化反硝化强度。结果显示:4种进水方式的湿地模拟装置对NH4+-N的平均去除率差异性显著且与硝化强度差异性一致,闲置时间/反应时间为2∶1(D)的进水方式下基质的平均硝化强度最大,为(1.68±0.29)mg·kg-1·h-1,4种模拟装置的基质平均反硝化强度差异性也显著(P=1.202×10-5),连续流进水方式反硝化强度最大,为(2.99±1.58)mg·kg-1·h-1;TF-CW基质硝化强度与NH4+-N的去除率有明显的正相关性(r2=0.849 7,P=4.285×10-14),反硝化强度与NO3--N的出水浓度呈明显负相关关系(r2=0.844 8,P=6.939×10-14);装置上部0~30 cm的处理阶段硝化强度最大,随深度增加变化逐渐减小,反硝化强度在中部的30~60 cm阶段较高。本研究为TF-CW设计改善其运行效果奠定了理论基础,在进行人工湿地设计时需综合考虑NH4+-N和NO3--N的整体去除效果,将潮汐流人工湿地与连续流人工湿地进行组合并合理配置,对污染物的去除更加全面有效。  相似文献   

16.
以350 W氙灯为太阳光模拟光源,探讨了水环境中不同形态氮(NO3-、NO_2~-和NH+4)对阿昔洛韦(ACV)光解的影响.结果表明,ACV在不同形态氮离子溶液中的光解符合一级动力学规律,NO_3~-和NO_2~-均促进ACV的光解,NH+4对ACV的光解基本无影响;在NO_3~-、NO_2~-存在下,加入异丙醇作为羟基自由基猝灭剂,显著抑制了ACV的降解,表明NO_3~-、NO_2~-在光照下产生了·OH参与ACV的氧化降解.同时模拟研究了水体处于不同p E值时,水中不同形态氮共存对ACV光解的复合影响.p E值增大,ACV的光解速率先增大后减小;当NO_2~-和NH+4共存时,对ACV的光解主要表现为NO_2~-的影响;当NO_2~-和NO_3~-共存时,两者对ACV的光解存在拮抗作用,说明其对ACV的光解不是简单的叠加.  相似文献   

17.
2015年9月至2016年7月在新疆独山子区采集大气PM_(2.5)样品,对所含的水溶性无机离子和大气气态污染物的季节性变化进行了分析.其结果表明,PM_(2.5)、SO_2、NO_2和O_3的年均浓度分别为70.04、19.36、4.50、83.06μg·m~(-3); PM_(2.5)、SO_2、NO_2的浓度均出现冬季最高,夏季最低的趋势,而O_3浓度在春、夏季节偏高,冬季偏低;总水溶性无机离子的季节变化特征为冬季(68.99μg·m~(-3))秋季(14.23μg·m~(-3))春季(10.31μg·m~(-3))夏季(5.06μg·m~(-3)),其中SO_2~(-4)、NO_3~-、NH_4~+为水溶性无机离子的主要组成部分,占到水溶性总离子质量浓度的70%以上.对硫氧化率(SOR)和氮氧化率(NOR)的估算表明,全年SOR的值均大于0.1,表明SO_2~(-4)主要来自大气二次转化.夏季NOR值远低于其它季节. SO_2~(-4)浓度和SOR在冬季出现较高值,可能是由于冬季取暖导致SO_2排放量增加,同时较高的相对湿度又促进了SO_2的非均相转化.受相对湿度的影响,NO_3~-在冬季主要以非均相反应的方式生成,在春、夏、秋的3个季节主要以均相反应的方式生成;当PM_(2.5)的质量浓度大于75μg·m~(-3)时,NO_3~-/SO_2~(-4)、NOR/SOR和NOR值均显著增加,表明独山子区的硝酸盐污染较为严重.  相似文献   

18.
木质纤维素降解是中草药渣堆肥的主要难点.在前期小试的基础上,接种纤维素降解菌剂,将1 t新鲜药渣直接进行好氧堆肥.腐熟度指标T值和种子发芽指数(GI)显示,堆肥19 d左右就已经腐熟.堆肥过程中接种组(JZ)和对照组(CK)的纤维素平均降解速率分别为0.73 kg/d和0.64 kg/d,JZ比CK纤维素降解总量提高了13.39%,木质素降解量提高118.18%.第30天时,堆肥的含水率、p H、总养分、重金属等指标都达到有机肥料标准(NY 525-2012).接种菌剂提高了堆肥温度,加速了水分散失,促进了纤维素和木质的转化,有利于堆肥腐熟和提高肥料品质.因此,在中试规模上堆肥中草药渣生产有机肥是可行的.  相似文献   

19.
水溶性无机离子是PM_(2.5)的主要组分之一,对研究PM_(2.5)的物理化学性质,来源及其形成机理具有重要意义.本研究于2017年9月—2017年11月期间在贵阳城区采集了80个PM_(2.5)样品,并测定了8种水溶性离子浓度,探讨贵阳秋季PM_(2.5)水溶性离子组成特征及来源.结果表明贵阳秋季PM_(2.5)中无机离子的平均质量浓度为15.99μg·m~(-3),阴离子和阳离子的平均质量浓度分别为10. 90μg·m~(-3)、5. 09μg·m~(-3); SO_4~(2-)(8. 53±4.63μg·m~(-3))平均质量浓度最高,其次是NH_4~+(2.56±1.62μg·m~(-3))、NO_3~-(2.21±2.96μg·m~(-3))、Ca~(2+)(1.98±0.88μg·m~(-3)),最后依次是K~+(0.37±0.24μg·m~(-3))、Cl-(0.16±0.11μg·m~(-3))、Mg~(2+)(0.11±0.03μg·m~(-3))、Na~+(0.07±0.06μg·m~(-3)); NH_4~+、SO_4~(2-)、NO_3~-是主要水溶性离子,所占比例为83%; NO_3~-/SO_4~(2-)值平均为0.21±0.12,远小于1,说明贵阳秋季PM_(2.5)以固定源污染为主.相关性分析表明,PM_(2.5)中NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3的形式存在,Ca~(2+)与Mg~(2+)来源可能相同.结合富集系数分析NO_3~-、SO_4~(2-)、Ca~(2+)、K~+、Mg~(2+)基本都是来源于陆源贡献,NO_3~-、SO_4~(2-)是人为源,Ca~(2+)、K~+、Mg~(2+)是地壳源,此外Mg~(2+)还有一部分海源贡献.  相似文献   

20.
氯仿作为抑制剂对沉积物-水系统中氮转化的影响   总被引:2,自引:0,他引:2  
卢少勇  金相灿  郭建宁  盛利 《生态环境》2006,15(6):1133-1137
氯仿是土壤的营养物释放实验中常用的微生物活性抑制剂。文章探讨了在滇池沉积物-自配水系统中投加氯仿后系统中上覆水的氮质量浓度变化(上覆水初始质量浓度:总氮15.0mg·L-1,氨氮7.5mg·L-1,硝氮7.5mg·L-1)以及沉积物中的硝化和反硝化活性的变化。结果表明,实验过程中上覆水的总氮、氨氮和有机氮的质量浓度升高,硝氮的质量浓度降低,加氯仿组和未加氯仿组的总氮分别升高35.9%和46.9%。这是因为实验过程中硝化速率降低而反硝化速率升高导致的。加抑制剂组的上覆水中的总氮和氨氮质量浓度总体上高,硝氮和有机氮总体上低,说明氯仿对硝化反应的抑制作用持续到第816h,在最初和后期抑制作用更显著。加氯仿组的pH值明显高于未加氯仿组,DO质量浓度稍高于未加氯仿组。实验结束后,加氯仿组的沉积物的硝化速率和反硝化速率略低于未加氯仿组的。氯仿在沉积物-水系统中起到一定的抑制作用,使沉积物的硝化速率和反硝化速率均降低,但是硝化反硝化活性并未彻底地被抑制;而且抑制具有一定的时效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号