首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
In the western Amazon Basin, recent intensification of river‐level cycles has increased flooding during the wet seasons and decreased precipitation during the dry season. Greater than normal floods occurred in 2009 and in all years from 2011 to 2015 during high‐water seasons, and a drought occurred during the 2010 low‐water season. During these years, we surveyed populations of terrestrial, arboreal, and aquatic wildlife in a seasonally flooded Amazonian forest in the Loreto region of Peru (99,780 km2) to study the effects of intensification of natural climatic fluctuations on wildlife populations and in turn effects on resource use by local people. Shifts in fish and terrestrial mammal populations occurred during consecutive years of high floods and the drought of 2010. As floods intensified, terrestrial mammal populations decreased by 95%. Fish, waterfowl, and otter (Pteronura brasiliensis) abundances increased during years of intensive floods, whereas river dolphin and caiman populations had stable abundances. Arboreal species, including, macaws, game birds, primates, felids, and other arboreal mammals had stable populations and were not affected directly by high floods. The drought of 2010 had the opposite effect: fish, waterfowl, and dolphin populations decreased, and populations of terrestrial and arboreal species remained stable. Ungulates and large rodents are important sources of food and income for local people, and large declines in these animals has shifted resource use of people living in the flooded forests away from hunting to a greater reliance on fish.  相似文献   

2.
Harnessing the economic potential of the oceans is key to combating poverty, enhancing food security, and strengthening economies. But the concomitant risk of intensified resource extraction to migratory species is worrying given these species contribute to important ecological processes, often underpin alternative livelihoods, and are mostly already threatened. We thus sought to quantify the potential conflict between key economic activities (5 fisheries and hydrocarbon exploitation) and sea turtle migration corridors in a region with rapid economic development: southern and eastern Africa. We satellite tracked the movement of 20 loggerhead (Caretta caretta) and 14 leatherback (Dermochelys coriacea) turtles during their postnesting migrations. We used movement‐based kernel density estimation to identify migration corridors for each species. We overlaid these corridors on maps of the distribution and intensity of economic activities, quantified the extent of overlap and threat posed by each activity on each species, and compared the effects of activities. These results were compared with annual bycatch rates in the respective fisheries. Both species’ 3 corridors overlapped most with longline fishing, but the effect was worse for leatherbacks: their bycatch rates of approximately 1500/year were substantial relative to the regional population size of <100 nesting females/annum. This bycatch rate is likely slowing population growth. Artisanal fisheries may be of greater concern for loggerheads than for leatherbacks, but the population appears to be withstanding the high bycatch rates because it is increasing exponentially. The hydrocarbon industry currently has a moderately low impact on both species, but mining in key areas (e.g., Southern Mozambique) may undermine >50 years of conservation, potentially affecting >80% of loggerheads, 33% of the (critically endangered) leatherbacks, and their nesting beaches. We support establishing blue economies (i.e., generating wealth from the ocean), but oceans need to be carefully zoned and responsibly managed in both space and time to achieve economic (resource extraction), ecological (conservation, maintenance of processes), and social (maintenance of alternative livelihood opportunities, alleviate poverty) objectives.  相似文献   

3.
Understanding how the relationships between large carnivores and humans have evolved and have been managed through centuries can provide relevant insights for wildlife conservation. The management history of many large carnivores has followed a similar pattern, from game reserved for nobility, to persecuted pests, to conservation targets. We reconstructed the history of brown bear (Ursus arctos) management in Bia?owie?a Forest (Poland and Belarus) based on a detailed survey of historical literature and Russian archives. From the end of the Middle Ages to the end of 18th century, the brown bear was considered “animalia superiora” (i.e., game exclusively reserved for nobility and protected by law). Bears, also a source of public entertainment, were not regarded as a threat. Effective measures to prevent damages to traditional forest beekeeping were already in practice. In the beginning of 19th century, new game‐management approaches allowed most forest officials to hunt bears, which became the primary target of hunters due to their valuable pelt. This, together with an effective anticarnivore policy enhanced by bounties, led to bear extirpation in 1879. Different approaches to scientific game management appeared (planned extermination of predators and hunting levels that would maintain stable populations), as did the first initiatives to protect bears from cruel treatment in captivity. Bear reintroduction in Bia?owie?a Forest began in 1937 and represented the world's first reintroduction of a large carnivore motivated by conservation goals. The outbreak of World War II spoiled what might have been a successful project; reproduction in the wild was documented for 8 years and bear presence for 13. Soft release of cubs born in captivity inside the forest but freely roaming with minimal human contact proved successful. Release of captive human‐habituated bears, feeding of these bears, and a lack of involvement of local communities were weaknesses of the project. Large carnivores are key components of ecosystem‐function restoration, and site‐specific histories provide important lessons in how to preserve them for the future.  相似文献   

4.
5.
Illegal fishing poses a major threat to conservation of marine resources worldwide. However, there is still limited empirical research that quantifies illegal catch levels. We used the randomized response technique to estimate the proportion of divers and the quantities of loco (Concholepas concholepas) they extracted illegally. Loco have been managed for the past 17 years through a territorial user rights for fisheries system (TURFs) in Chile. Illegal fishing of loco was widespread within the TURFs system. Official reported landings (i.e., legal landings) accounted for 14–30% of the total loco extraction. Our estimates suggest that ignoring the magnitude of illegal fishing and considering only official landing statistics may lead to false conclusions about the status and trends of a TURFs managed fishery. We found evidence of fisher associations authorizing their members to poach inside TURFs, highlighting the need to design TURFs systems so that government agencies and fishers’ incentives and objectives align through continuous adaptation. Government support for enforcement is a key element for the TURFs system to secure the rights that are in place.  相似文献   

6.
Contraception has an established role in managing overabundant populations and preventing undesirable breeding in zoos. We propose that it can also be used strategically and selectively in conservation to increase the genetic and behavioral quality of the animals. In captive breeding programs, it is becoming increasingly important to maximize the retention of genetic diversity by managing the reproductive contribution of each individual and preventing genetically suboptimal breeding through the use of selective contraception. Reproductive suppression of selected individuals in conservation programs has further benefits of allowing animals to be housed as a group in extensive enclosures without interfering with breeding recommendations, which reduces adaptation to captivity and facilitates the expression of wild behaviors and social structures. Before selective contraception can be incorporated into a breeding program, the most suitable method of fertility control must be selected, and this can be influenced by factors such as species life history, age, ease of treatment, potential for reversibility, and desired management outcome for the individual or population. Contraception should then be implemented in the population following a step‐by‐step process. In this way, it can provide crucial, flexible control over breeding to promote the physical and genetic health and sustainability of a conservation dependent species held in captivity. For Tasmanian devils (Sarcophilus harrisii), black‐flanked rock wallabies (Petrogale lateralis), and burrowing bettongs (Bettongia lesueur), contraception can benefit their conservation by maximizing genetic diversity and behavioral integrity in the captive breeding program, or, in the case of the wallabies and bettongs, by reducing populations to a sustainable size when they become locally overabundant. In these examples, contraceptive duration relative to reproductive life, reversibility, and predictability of the contraceptive agent being used are important to ensure the potential for individuals to reproduce following cessation of contraception, as exemplified by the wallabies when their population crashed and needed females to resume breeding.  相似文献   

7.
Abstract: The intensely regulated Murray‐Darling Basin in southeastern Australia is the nation's most extensive and economically important river system, and it contains fragmented populations of numerous fish species. Among these is the Murray hardyhead (Craterocephalus fluviatilis), a species listed as endangered (International Union for Conservation of Nature Red List) in the mid‐1990s prior to its acute decline with the progression of a severe drought that began in 1997. We compared the genetic structure of Murray hardyhead with 4 congeneric species (Darling hardyhead[C. amniculus], Finke hardyhead[C. centralis], Lake Eyre hardyhead[C. eyresii], and unspecked hardyhead[C. stercusmuscarum]), selected on the basis of their taxonomic or biological similarity to Murray hardyhead, in order to affirm species boundaries and test for instances of introgressive hybridization, which may influence species ecology and conservation prospects. We used allozyme (52 loci) and mtDNA markers (1999 bp of ATPase and cytochrome b) to provide a comparative genetic assessment of 139 Murray hardyhead, which represented all extant and some recently extirpated populations, and 71 congeneric specimens from 12 populations. We confirmed that Murray hardyhead and Darling hardyhead are taxonomically distinct and identified a number of potential conservation units, defined with genetic criteria, in both species. We also found allozyme and mtDNA evidence of historic genetic exchange between these 2 allopatric species, apparently involving one population of each species at the geographic edge of the species’ ranges, not in the most proximate populations sampled. Our results provide information on species boundaries and offer insight into the likely causes of high genetic diversity in certain populations, results which are already being used to guide national recovery planning and local action. Given the prevalence of incorrect taxonomies and introgression in many organismal groups, we believe these data point to the need to commence genetic investigations of any threatened species from an initially broad taxonomic focus.  相似文献   

8.
As ecosystems come under increasing anthropogenic pressure, rare species face the highest risk of extinction. Paradoxically, data necessary to evaluate the conservation status of rare species are often lacking because of the challenges of detecting species with low abundance. One group of fishes subject to this undersampling bias are those with cryptic body patterns. Twenty‐one percent of cryptic fish species assessed for their extinction risk (International Union for Conservation of Nature [IUCN]) are data deficient. We developed a nondestructive method for surveying cryptically patterned marine fishes based on the presence of biofluorescence (underwater biofluorescence census, UBC). Blue LED torches were used to investigate how widespread biofluorescence was in cryptic reef fishes in the Coral Triangle region. The effectiveness of UBC to generate abundance data was tested on a data‐deficient pygmy seahorse species (Hippocampus bargibanti) and compared with data obtained from standard underwater visual census (UVC) surveys. We recorded 95 reef fish species displaying biofluorescence, 73 of which had not been previously described as biofluorescent. Of those fish with cryptic patterns, 87% were biofluorescent compared with 9% for noncryptic fishes. The probability of species displaying biofluorescence was 70.9 times greater for cryptic species than for noncryptic species. Almost twice the number of H. bargibanti was counted using the UBC compared with UVC. For 2 triplefin species (Ucla xenogrammus, Enneapterygius tutuilae), the abundance detected with UBC was triple that detected with UVC. The UBC method was effective at finding cryptic species that would otherwise be difficult to detect and thus will reduce interobserver variability inherent to UVC surveys. Biofluorescence is ubiquitous in cryptic fishes, making this method applicable across a wide range of species. Data collected using UBC could be used with multiple IUCN criteria to assess the extinction risk of cryptic species. Adopting this technique will enhance researchers’ ability to survey cryptic species and facilitate management and conservation of cryptic marine species.  相似文献   

9.
Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.  相似文献   

10.
Success of animal translocations depends on improving postrelease demographic rates toward establishment and subsequent growth of released populations. Short‐term metrics for evaluating translocation success and its drivers, like postrelease survival and fecundity, are unlikely to represent longer‐term outcomes. We used information theory to investigate 25 years of data on black rhinoceros (Diceros bicornis) translocations. We used the offspring recruitment rate (ORR) of translocated females—a metric integrating survival, fecundity, and offspring recruitment at sexual maturity—to detect determinants of success. Our unambiguously best model (AICω = 0.986) predicted that ORR increases with female age at release as a function of lower postrelease adult rhinoceros sex ratio (males:females). Delay of first postrelease reproduction and failure of some females to recruit any calves to sexual maturity most influenced the pattern of ORRs, and the leading causes of recruitment failure were postrelease female death (23% of all females) and failure to calve (24% of surviving females). We recommend translocating older females (≥6 years old) because they do not exhibit the reproductive delay and low ORRs of juveniles (<4 years old) or the higher rates of recruitment failure of juveniles and young adults (4–5.9 years old). Where translocation of juveniles is necessary, they should be released into female‐biased populations, where they have higher ORRs. Our study offers the unique advantage of a long‐term analysis across a large number of replicate populations—a science‐by‐management experiment as a proxy for a manipulative experiment, and a rare opportunity, particularly for a large, critically endangered taxon such as the black rhinoceros. Our findings differ from previous recommendations, reinforce the importance of long‐term data sets and comprehensive metrics of translocation success, and suggest attention be shifted from ecological to social constraints on population growth and species recovery, particularly when translocating species with polygynous breeding systems.  相似文献   

11.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   

12.
Island populations are vulnerable to introduced pathogens, as evidenced by extinction or population decline of several endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum (order Haemosporida). We analyzed blood samples from 363 birds caught near Guantánamo Bay, Cuba, for the presence of haemosporidian infections. We characterized parasite lineages by determining nucleotide variation of the parasite's mitochondrial cyt b gene. Fifty‐nine individuals were infected, and we identified 7 lineages of haemosporidian parasites. Fifty individuals were infected by 6 Haemoproteus sp. lineages, including a newly characterized lineage of Haem. (Parahaemoproteus) sp. CUH01. Nine individuals carried the P. relictum lineage GRW4, including 5 endemic Cuban Grassquits (Tiaris canorus) and 1 migratory Cape May Warbler (Setophaga tigrina). A sequence of the merozoite surface protein gene from one Cuban Grassquit infected with GRW4 matched that of the Hawaiian haplotype Pr9. Our results indicate that resident and migratory Cuban birds are infected with a malaria lineage that has severely affected populations of several endemic Hawaiian birds. We suggest GRW4 may be associated with the lack of several bird species on Cuba that are ubiquitous elsewhere in the West Indies. From the standpoint of avian conservation in the Caribbean Basin, it will be important to determine the distribution of haemosporidian parasites, especially P. relictum GRW4, in Cuba as well as the pathogenicity of this lineage in species that occur and are absent from Cuba.  相似文献   

13.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems.  相似文献   

14.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   

15.
Passive acoustic monitoring could be a powerful way to assess biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices (i.e., a mathematical summary of acoustic energy) offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examined the relationship between acoustic indices and the diversity and abundance of biological sounds in recordings. We reviewed the acoustic‐index literature and found that over 60 indices have been applied to a range of objectives with varying success. We used 36 of the most indicative indices to develop a predictive model of the diversity of animal sounds in recordings. Acoustic data were collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental United States. For terrestrial recordings, random‐forest models with a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R2 ≥ 0.94, mean squared error [MSE] ≤170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively affected by insect, weather, and anthropogenic sounds. For marine recordings, random‐forest models poorly predicted Shannon diversity, richness, and total number of biological sounds (R2 ≤ 0.40, MSE ≥ 195). Our results suggest that using a combination of relevant acoustic indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats.  相似文献   

16.
The thylacine (Thylacinus cynocephalus), one of Australia's most characteristic megafauna, was the largest marsupial carnivore until hunting, and potentially disease, drove it to extinction in 1936. Although thylacines were restricted to Tasmania for 2 millennia prior to their extinction, recent so‐called plausible sightings on the Cape York Peninsula in northern Queensland have emerged, leading some to speculate the species may have persisted undetected. We compiled a data set that included physical evidence, expert‐validated sightings, and unconfirmed sightings up to the present day and implemented a range of extinction models (focusing on a Bayesian approach that incorporates all 3 types of data by modeling valid and invalid sightings as independent processes) to evaluate the likelihood of the thylacine's persistence. Although the last captive individual died in September 1936, our results suggested that the most likely extinction date would be 1940. Our other extinction models estimated the thylacine's extinction date between 1936 and 1943, and the most optimistic scenario indicated that the species did not persist beyond 1956. The search for the thylacine, much like similar efforts to rediscover other recently extinct charismatic taxa, is likely to be fruitless, especially given that persistence on Tasmania would have been no guarantee the species could reappear in regions that had been unoccupied for millennia. The search for the thylacine may become a rallying point for conservation and wildlife biology and could indirectly help fund and support critical research in understudied areas such as Cape York. However, our results suggest that attempts to rediscover the thylacine will be unsuccessful and that the continued survival of the thylacine is entirely implausible based on most current mathematical theories of extinction.  相似文献   

17.
Effective population size, a central concept in conservation biology, is now routinely estimated from genetic surveys and can also be theoretically predicted from demographic, life‐history, and mating‐system data. By evaluating the consistency of theoretical predictions with empirically estimated effective size, insights can be gained regarding life‐history characteristics and the relative impact of different life‐history traits on genetic drift. These insights can be used to design and inform management strategies aimed at increasing effective population size. We demonstrated this approach by addressing the conservation of a reintroduced population of Asiatic wild ass (Equus hemionus). We estimated the variance effective size (Nev) from genetic data () and formulated predictions for the impacts on Nev of demography, polygyny, female variance in lifetime reproductive success (RS), and heritability of female RS. By contrasting the genetic estimation with theoretical predictions, we found that polygyny was the strongest factor affecting genetic drift because only when accounting for polygyny were predictions consistent with the genetically measured Nev. The comparison of effective‐size estimation and predictions indicated that 10.6% of the males mated per generation when heritability of female RS was unaccounted for (polygyny responsible for 81% decrease in Nev) and 19.5% mated when female RS was accounted for (polygyny responsible for 67% decrease in Nev). Heritability of female RS also affected Nev; (heritability responsible for 41% decrease in Nev). The low effective size is of concern, and we suggest that management actions focus on factors identified as strongly affecting , namely, increasing the availability of artificial water sources to increase number of dominant males contributing to the gene pool. This approach, evaluating life‐history hypotheses in light of their impact on effective population size, and contrasting predictions with genetic measurements, is a general, applicable strategy that can be used to inform conservation practice.  相似文献   

18.
The Adriatic and Ionian Region is an important area for both strategic maritime development and biodiversity conservation in the European Union (EU). However, given that both EU and non‐EU countries border the sea, multiple legal and regulatory frameworks operate at different scales, which can hinder the coordinated long‐term sustainable development of the region. Transboundary marine spatial planning can help overcome these challenges by building consensus on planning objectives and making the trade‐offs between biodiversity conservation and its influence on economically important sectors more explicit. We address this challenge by developing and testing 4 spatial prioritization strategies with the decision‐support tool Marxan, which meets targets for biodiversity conservation while minimizing impacts to users. We evaluated these strategies in terms of how priority areas shift under different scales of target setting (e.g., regional vs. country level). We also examined the trade‐off between cost‐efficiency and how equally solutions represent countries and maritime industries (n = 14) operating in the region with the protection‐equality metric. We found negligible differences in where priority conservation areas were located when we set targets for biodiversity at the regional versus country scale. Conversely, the prospective impacts on industries, when considered as costs to be minimized, were highly divergent across scenarios and biased the placement of protection toward industries located in isolation or where there were few other industries. We recommend underpinning future marine spatial planning efforts in the region through identification of areas of national significance, transboundary areas requiring cooperation between countries, and areas where impacts on maritime industries require careful consideration of the trade‐off between biodiversity conservation and socioeconomic objectives.  相似文献   

19.
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus.  相似文献   

20.
Lingfeng Kong  Qi Li 《Marine Biology》2009,156(7):1507-1515
Coelomactra antiquata is a commercially important bivalve species, but has been suffering from severe population decline due to over-exploitation and the deterioration of environmental conditions. Previous genetic survey of C. antiquata conducted with allozymes combined with morphology revealed high levels of genetic differentiation between northern and southern populations which suggests a cryptic species might exist in C. antiquata. To test this hypothesis, amplified fragment length polymorphisms (AFLPs) and 16S rRNA gene sequence were used to re-evaluate the spatial genetic structure of six populations of C. antiquata along the coast of China. Both genetic markers display a sharp genetic break between the four northern populations (northern lineage) and two southern population (southern lineage). Large numbers of private alleles (AFLP) were found within the northern or southern populations and a deep divergence of about 6.5% in 16S rRNA gene sequence between the northern and southern lineages suggests the occurrence of potential cryptic or sibling species of C. antiquata. Applying previously published rates of mutation, divergence between the two lineages is estimated to have occurred approximately 3 million years ago and may be due to allopatric isolation during the middle Pliocene times. While no genetic differentiation was found within the northern or southern populations in both AFLP and 16S mtDNA markers, the results indicate that the northern and southern lineage should be managed separately and any translocation between the two areas should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号