首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Land-use change can lead to changes in soil carbon (C) and nitrogen (N) storage. This study aimed to determine the impact of long-term grazing exclusion (GE) on soil organic C and total N (TN) storage in the Leymus chinensis grasslands of northern China and to estimate the dynamics of recovery after GE. We investigated the aboveground biomass and soil organic C and TN storage in six contiguous plots along a GE chronosequence comprising free grazing, 3-yr GE, 8-yr GE, 20-yr GE, 24-yr GE, and 28-yr GE. Grazing exclusion for two decades increased the soil C and N storage by 35.7 and 14.6%, respectively, in the 0- to 40-cm soil layer. The aboveground net primary productivity and soil C and N storage were the highest with 24-yr GE and the lowest with free grazing. The storage increased logarithmically with the duration of GE; after an initial rapid increase after the introduction of GE, the storage attained equilibrium after 20 yr. A logarithmic regression analysis revealed 86.8 and 87.1% variation in the soil C storage and 74.2 and 80.7% variation in the soil N storage in the 0- to 10-cm and 0- to 40-cm soil layers, respectively. Based on these results, we suggest that two decades of GE would restore the L. chinensis grasslands from being lightly degraded to a stable productive condition with good soil C and N storage capacity. Our results demonstrated that by implementing GE, the temperate grasslands of northern China could facilitate significant C and N storage on decade scales in the context of mitigating global climate change.  相似文献   

2.
Experiments to document the long-term effects of clipping management on N requirements, soil organic carbon (SOC), and soil organic nitrogen (SON) are difficult and costly and therefore few. The CENTURY ecosystem model offers an opportunity to study long-term effects of turfgrass clipping management on biomass production, N requirements, SOC and SON, and N leaching through computer simulation. In this study, the model was verified by comparing CENTURY-predicted Kentucky bluegrass (Poa pratensis L.) clipping yields with field-measured clipping yields. Long-term simulations were run for Kentucky bluegrass grown under home lawn conditions on a clay loam soil in Colorado. The model predicted that compared with clipping-removed management, returning clippings for 10 to 50 yr would increase soil C sequestration by 11 to 25% and nitrogen sequestration by 12 to 28% under a high (150 kg N ha(-1) yr(-1) nitrogen (N) fertilization regime, and increase soil carbon sequestration by 11 to 59% and N sequestration by 14 to 78% under a low (75 kg N ha(-1) yr(-1)) N fertilization regime. The CENTURY model was further used as a management supporting system to generate optimal N fertilization rates as a function of turfgrass age. Returning grass clippings to the turf-soil ecosystem can reduce N requirements by 25% from 1 to 10 yr after turf establishment, by 33% 11 to 25 yr after establishment, by 50% 25 to 50 yr after establishment, and by 60% thereafter. The CENTURY model shows potential for use as a decision-supporting tool for maintaining turf quality and minimizing negative environmental impacts.  相似文献   

3.
Future climate change is a source of growing concerns for the supply of energy and resources, and it may have significant impacts on industry and the economy. Major effects are likely to arise from changes to the freshwater resources system, due to the connection of energy generation to these water systems. Using future climate data downscaled by a stochastic weather generator, this study investigates the potential impacts of climate change on long‐term reservoir operations at the Chungju multipurpose dam in South Korea, specifically considering the reliability of the supply of water and hydropower. A reservoir model, Hydrologic Engineering Center‐Reservoir System Simulation (HEC‐ResSim), was used to simulate the ability of the dam to supply water and hydropower under different conditions. The hydrologic model Soil and Water Assessment Tool was used to determine the HEC‐ResSim boundary conditions, including daily dam inflow from the 6,642 km2 watershed into the 2.75 Gm3 capacity reservoir. Projections of the future climate indicate that temperature and precipitation during 2070‐2099 (2080s) show an increase of +4.1°C and 19.4%, respectively, based on the baseline (1990‐2009). The results from the models suggest that, in the 2080s, the average annual water supply and hydropower production would change by +19.8 to +56.5% and by +33.9 to 92.3%, respectively. Model simulations suggest that under the new climatic conditions, the reliability of water and hydropower supply would be generally improved, as a consequence of increased dam inflow.  相似文献   

4.
The possible response of the carbon (C) balance of China's forests to an increase in atmospheric CO(2) concentration and climate change was investigated through a series of simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model, which explicitly represents the effects of climate, CO(2) concentration, and nitrogen deposition on future C sequestration by forests. Two climate change scenarios (CGCM2-A2 and -B2) were used to drive the model. Simulations showed that China's forests were a C sink in the 1990 s, averaging 189 Tg C yr(-1) (about 13% of the global total). This sink peaks around 2020 and then gradually declines to 33.5 Tg C yr(-1) during 2091-2100 without climate and CO(2) changes. Effects of pure climate change of CGCM2-A2 and -B2 without allowing CO(2) effects on C assimilation in plants might reduce the average net primary productivity (NPP) of China's forests by 29% and 18% during 2091-2100, respectively. Total soil C stocks might decrease by 16% and 11% during this period. China's forests might broadly act as C sources during 2091-2100, with values of about 50 g Cm(-2)yr(-1) under the moderate warming of CGCM2-B2 and 50-200 g Cm(-2)yr(-1) under the warmer scenario of CGCM2-A2. An increase in CO(2) might broadly increase future C sequestration of China's forests. However, this CO(2) fertilization effect might decline with time. The CO(2) fertilization effects on NPP by the end of this century are 349.6 and 241.7 Tg C yr(-1) under CGCM2-A2 and -B2 increase scenarios, respectively. These effects increase by 199.1 and 126.6 Tg C yr(-1) in the first 50 years, and thereafter, by 150.5 and 115.1 Tg C yr(-1) in the second 50 years under CGCM2-A2 and -B2 increase scenarios, respectively. Under a CO(2) increase without climate change, the majority of China's forests would be C sinks during 2091-2100, ranging from 0 to 100 g Cm(-2)yr(-1). The positive effect of CO(2) fertilization on NPP and net ecosystem productivity would be exceeded by the negative effect of climate change after 2050. Under the CGCM2-A2 climate scenario and with direct CO(2) effects, China's forests may be a small C source of 7.6 Tg C yr(-1) during 2091-2100. Most forests act as C sources of 0-40 g Cm(-2)yr(-1). Under the CGCM2-B2 climate scenario and with direct CO(2) effects, China's forests might be a small C sink of 10.5 Tg C yr(-1) during 2091-2100, with C sequestration of most forests ranging from 0 to 40 g Cm(-2)yr(-1). Stand age structure plays a more dominant role in determining future C sequestration than CO(2) and climate change. The prediction of future C sequestration of China's forests is very sensitive to the Q(10) value used to estimate maintenance respiration and to soil water availability and less sensitive to N deposition scenario. The results are not yet comprehensive, as no forest disturbance data were available or predicted after 2001. However, the results indicate a range of possible responses of the C balance of China's forests to various scenarios of increase in CO(2) and climate change. These results could be useful for assessing measures to mitigate climate change through reforestation.  相似文献   

5.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

6.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   

7.
The assessment of the impact of climate change depends not only on quantitative changes in precipitation but also system characteristics that can be changed and enhanced. This study investigated the effect of building the shared network of a rainwater harvesting system as an adaptation to climate change scenarios. The performance of a rain barrel network under three climate change scenarios and three global circulation models (GCM) is examined. A sample community composed of four prospective users with individual storage is tested with various forms of shared connections. Most importantly, the results show that the benefit from shared rain barrels greatly increases under the climate change conditions compared with the historical rainfall data. Especially, for high reliabilities, the results indicate that the benefit of a rain barrel network increases under future climate change scenarios, whereas it does not show apparent improvement for low reliabilities. However, the performance of a rain barrel network is highly dependent on location and climate change scenarios. In contrast, the GCM does not considerably affect the performance of the shared network. The results of this study highlight the needs to establish sharing networks of rainwater harvesting systems under the climate change conditions, which would significantly increase the benefit of the entire community.  相似文献   

8.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   

9.
Soil organic C is often suggested as an indicator of soil quality, but desirable targets are rarely specified. We tested three approaches to define maximum and lowest desirable soil C contents for four New Zealand soil orders. Approach 1 used the New Zealand National Soils Database (NSD). The maximum C content was defined as the median value of long-term pastures, and the lower quartile defined the lowest desirable soil C content. Approach 2 used the CENTURY model to predict maximum C contents of long-term pasture. Lowest desirable content was defined by the level that still allowed recovery to 80% of the maximum C content over 25 yr. Approach 3 used an expert panel to define desirable C contents based on production and environmental criteria. Median C contents (0-20 cm) for the Recent, Granular, Melanic, and Allophanic orders were 72, 88, 98, 132 Mg ha(-1), and similar to contents predicted by the CENTURY model (78, 93, 102, and 134 Mg ha(-1), respectively). Lower quartile values (54, 78, 73, and 103 Mg ha(-1), respectively) were similar to the lowest desirable C contents calculated by CENTURY (55, 54, 67, and 104 Mg ha(-1), respectively). Expert opinion was that C contents could be depleted below these values with tolerable effects on production but less so for the environment. The CENTURY model is our preferred approach for setting soil organic C targets, but the model needs calibrating for other soils and land uses. The statistical and expert opinion approaches are less defensible in setting lower limits for desirable C contents.  相似文献   

10.
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号