首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Inter-seasonal studies on the trace metal load of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River were conducted between 2003 and 2004. The impact of anthropogenic activities especially industrial effluent, petroleum related wastes, gas flare and episodic oil spills on the ecosystem are remarkable. Trace metals analyzed included cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), vanadium (V) and zinc (Zn). Sediment particle size analysis revealed that they were characteristically psammitic and were predominantly of medium to fine grained sand (>73%), less of silt (<15%) and clay (<10%). These results correlated with low levels of trace elements such as Pb (0.03 ± 0.02 mg kg−1), Cr (0.22 ± 0.12 mg kg−1), Cd (0.05 ± 0.03 mg kg−1), Cu (0.04 ± 0.02 mg kg−1) and Mn (0.23 ± 0.22 mg kg−1) in the sediment samples. This observation is consistent with the scarcity of clayey materials known to be good scavengers for metallic and organic contaminants. Sediments indicated enhanced concentration of Fe, Ni and V, while other metal levels were relatively low. The concentrations of all the metals except Pb in surface water were within the permissible levels, suggesting that the petroleum contaminants had minimal effect on the state of pollution by trace metals in Iko River. Notably, the pollutant concentrations in the sediments were markedly higher than the corresponding concentrations in surface water and T. fuscatus tissues, and decreased with distance from point sources of pollution.  相似文献   

2.
The impact of anthropogenic activities on the fluctuation of nutrients along the Densu River and its tributaries was studied. High concentrations of nutrients were observed in the study area but the river was found to be circumneutral and fresh with pH ranging between 6.54 and 7.84. The levels of NH4 +–N ranged between 0.21 and 2.1 mg L−1 with mean concentration of 1.19 ± 0.02 mg L−1 while that of nitrate is between 0.13 and 5.21 mg L−1 with a mean concentration of 2.07 ± 0.01 mg L−1. The levels of PO4 3−–P fluctuated within the range 0.54 and 1.04 mg L−1 with a mean of 0.84 ± 0.01 mg L−1. The Densu River Basin was also found to be with organic matter with depleted dissolved oxygen. The river recorded high BOD values ranging from 6.91 to 18.8 mg L−1. Concentration of nutrients and organic pollutants increased as a consequence of anthropogenic inputs particularly from domestic, agricultural and municipal sources. The highly impaired sites were those located close to the urbanized, agricultural and high-density residential areas. The relatively high concentration of nitrate and phosphate in the river indicated that it was quite eutrophic.  相似文献   

3.
Textile mill waste can be vermicomposted if it is mixed in the range of 20–30% with cow dung. This article reports the effect of inoculation, of nitrogen fixing Azotobacter chroococcum strain; Azospirillum brasilense strain and phosphate solubilizing Pseudomonas maltophila, on nitrogen and phosphorus content of vermicomposts prepared from cow dung (CD) and cow dung spiked textile mill sludge (CD + STMS). The CD vermicompost was more supportive to the growth and multiplication of all the three bacteria than CD + STMS vermicompost. In Azotobacter chroococcum treated vermicomposts maximum nitrogen content was recorded between 45 and 60 days [CD␣vermicompost (25.9 ± 0.45 g kg−1) and CD + STMS vermicompost (20.6 ± 0.62 g kg−1)] followed by Azospirillum brasilense inoculation [CD vermicompost (19.4 ± 0.60 g kg−1) and CD + STMS vermicompost (18.6 ± 0.17 g kg−1)]. Phosphorus content in Pseudomonas maltophila inoculated CD vermicompost was 20.8 ± 0.20 g kg−1 and CD + STMS vermicompost was 13.4 ± 0.45 g kg−1 after 75th day of inoculation.  相似文献   

4.
This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005–August 2006) with 11 observations. Significant differences in soil NH4 +–N and NO3 –N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 –N content. In tropical cloud forest and grassland, high soil NH4 +–N and low NO3 –N content were recorded, while soil NO3 –N content was high in coffee crop. Low NO3 –N contents could mean a substantial microbial assimilation of NO3 –N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function (N = 33 + 2459exp−0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.  相似文献   

5.
Here we report N2O emission results for freshwater marshes isolated from human activities at the Sanjiang Experimental Station of Marsh Wetland Ecology in northeastern China. These results are important for us to understand N2O emission in natural processes in undisturbed freshwater marsh. Two adjacent plots of Deyeuxia angustifolia freshwater marsh with different water regimes, i.e., seasonally waterlogged (SW) and not- waterlogged (NW), were chosen for gas sampling, and soil and biomass studies. Emissions of N2O from NW plots were obviously higher than from the SW plots. Daily maximum N2O flux was observed at 13 o′clock and the seasonal maximum occurred in end July to early August. The annual average N2O emissions from the NW marsh were 4.45 μg m−2 h−1 in 2002 and 6.85 μg m−2 h−1 in 2003 during growing season. The SW marsh was overall a sink for N2O with corresponding annual emissions of −1.00 μg m−2 h−1 for 2002 and −0.76 μg m−2 h−1 for 2003. There were significant correlations between N2O fluxes and temperatures of both air and 5-cm-depth soil. The range of soil redox potential 200–400 mV appeared to be optimum for N2O flux. Besides temperature and plant biomass, the freeze–thaw process is also an important factor for N2O emission burst. Our results show that the freshwater marsh isolated from human activity in northeastern China is not a major source of N2O.  相似文献   

6.
Epigeic earthworms (Oligochaeta) have been appeared as key organisms to convert organic waste resources into value-added products, i.e., vermicompost and worm biomass. The assessment of reproduction potential of composting earthworm may be beneficial for large-scale earthworm production. Although, the waste minimizing potential of Perionyx excavatus and Perionyx sansibaricus is well proved, but little information is available about their fecundity rate. In this study, the efforts have been made to explore the growth and reproduction biology of P. excavatus and P. sansibaricus, using cattle waste solid as culture substrate, under laboratory conditions. Earthworms were weighed weekly and number of cocoons produced per week assessed. Biomass productions, fecundity, maturation, natality all were significantly different between P. excavatus and P. sansibaricus. The highest mean individual biomass was 767.7 ± 18.4 mg and 612.6 ± 20.6 mg, respectively in P. sansibaricus and P. excavatus. However, the highest cocoon numbers occurred in P. excavatus (492.3 ± 13.6), significantly higher than P. sansibaricus (269.6 ± 17.1). Fecundity was slightly different in both species: 1.38 ± 0.77 cocoons adult worm−1 week−1 (P. excavatus) and 1.58 ± 0.74 cocoons adult worm−1 week−1 (P. sansibaricus). The hatchling success rate (%) was highest in P. excavatus. Overall natality (juveniles adult−1 week−1) was highest in P. sansibaricus (1.52) than P. excavatus (1.26), which suggests that P. sansibaricus may be a better candidate for rapid propagation of earthworms in cattle waste solid.  相似文献   

7.
Nine heavy metals were estimated in lichen, Phaeophyscia hispidula (Ach.) Moberg, collected from 12 different sites of Dehradun, capital city, to analyze the air quality of Uttarakhand. Total metal concentration was the highest at Mohkampur Railway Crossing, Hardwar Road (42,505 μg g−1). Dela Ram Chowk, located in the center of the city, also had higher metal concentration, 34,317 μg g−1, with maximum concentration of Pb at 12,433 μg g−1, while Nalapani forest area had minimum total metal concentration (1,873 μg g−1) as well as minimum Pb level at 66.6 μg g−1, indicating anthropogenic activity, mainly vehicular activity, responsible for the increase in metal concentration in the ambient environment. In comparison with the earlier years 2004 and 2006, air pollution as indicated by similar lichen shows a considerable increase in the total metal concentration (especially Pb) in the ambient air of Dehradun city, which may be attributed to exponential rise in the traffic activity in the last 5 years.  相似文献   

8.
This study investigated the use of electrokinetics in unsaturated soil to promote biodegradation of pentachlorophenol through increased contact between bacteria and contaminant. Soil microcosms, contaminated with approximately 100 mg kg−1 pentachlorophenol (containing [14C]-PCP as a tracer), and inoculated with a specific pentachlorophenol-degrading bacterium (Sphingobium sp. UG30–1 × 108 cfu g−1) were subjected to constant and regularly reversed electric currents (10 mA). The former caused large pH and moisture content changes due to water electrolysis and electroosmotic effects, with subsequent negative impacts on biodegradation parameters including enzyme activity and contaminant mineralisation (as measured by 14CO2 evolution rate). The reversed field caused little change in pH and moisture content and led to more rapid contaminant mineralisation, lower soil contaminant concentration in the majority of the microcosms and increased soil enzyme activity (with the exception of soil immediately adjacent to the anode). The presence of an electric field, if suitably applied, may therefore enhance contaminant biodegradation in unsaturated soil.  相似文献   

9.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

10.
This study was designed to examine the responses of soil CO2 efflux to precipitation pulses of varying intensities using precipitation simulations in two subtropical forests [i.e., mixed and broadleaf forests (MF and BF)] in southern China. The artificial precipitation event was achieved by spraying a known amount of water evenly in a plot (50 × 50 cm2) over a 30 min period, with intensities ranging from 10, 20, 50 and 100 mm within the 30 min. The various intensities were simulated in both dry season (in December 2007) and wet (in May 2008) season. We characterized the dynamic patterns of soil CO2 efflux rate and environmental factors over the 5 h experimental period. Results showed that both soil moisture and soil CO2 efflux rate increased to peak values for most of the simulated precipitation treatments, and gradually returned to the pre-irrigation levels after irrigation in two forests. The maximum peak of soil CO2 efflux rate occurred at the 10 mm precipitation event in the dry season in BF and was about 3.5 times that of the pre-irrigation value. The change in cumulative soil CO2 efflux following precipitation pulses ranged from −0.68 to 1.72 g CO2 m−2 over 5 h compared to the pre-irrigation levels and was generally larger in the dry season than in the wet season. The positive responses of soil CO2 efflux to precipitation pulses declined with the increases in precipitation intensity, and surprisingly turned to negative when precipitation intensity reached 50 and 100 mm in the wet season. These findings indicated that soil CO2 efflux could be changed via pulse-like fluxes in subtropical forests in southern China as fewer but extreme precipitation events occur in the future.  相似文献   

11.
Poor vegetation cover is generally considered to be a major factor causing soil erosion on the Loess Plateau in China. It has been argued that tree planting restoration is ineffective, and natural re-vegetation is an alternative ecological solution for restoring abandoned cropland and controlling soil erosion. The aims of this study were to investigate the characteristics of soil seed banks and to assess the natural restoration potential of abandoned cropland in the hilly-gullied Loess Plateau. The soil seed bank was identified by the germination method with the soil samples, which were collected at four sampling times (April, August, and October 2005 and August 2006) from 12 plots abandoned 3–30 years prior to sampling. The seed bank densities of all of the samples in the 0–10 cm soil layer varied from 1,067 ± 225 to 14,967 ± 1,606 seeds m−2. Fifty-one species (24 annual and 27 perennial species) belonging to 18 families were identified, and 39% of these species belonged to the families Compositae and Gramineae. The pioneer species Artemisia scoparia dominated the seed bank, with an average seed density of 3,722 seeds m−2, and accounted for 74.4% of the seeds in the bank. The local dominant species (such as Lespedeza davurica, Artemisia gmelinii, Bothriochloa ischaemun and Stipa bungeana) of the later succession stages also existed at densities varying from 17 to 1, 383 seeds m−2. The combination of soil seed bank characteristics, reproductive traits of the species, the specific landscape conditions indicates that the potential to restoring the abandoned croplands in the hilly-gullied Loess Plateau via natural re-vegetation could be substantial.  相似文献   

12.
Efforts have been made to convert the guar gum industrial waste into a value-added product, by employing a new earthworm species for vermicomposting e.g. Perionyx sansibaricus (Perrier) (Megascolecidae), under laboratory conditions. Industrial lignocellulosic waste was amended with other organic supplements (saw dust and cow dung); and three types of vermibeds were prepared: guar gum industrial waste + cow dung + saw dust in 40: 30: 30 ratio (T1), guar gum industrial waste + cow dung + saw dust in 60: 20: 20 ratio (T2,), and guar gum industrial waste + cow dung + saw dust in 75: 15: 10 ratio (T3). As compared to initial concentrations, vermicomposts exhibited a decrease in organic C content (5.0–11.3%) and C:N ratio (11.1–24.4%) and an increase in total N (18.4–22.8%), available P (39.7–92.4%), and exchangeable K (9.4–19.7%) contents, after 150 days of vermicomposting. A vermicomposting coefficient (VC) was used to compare of vermicomposting with the experimental control (composting). P. sansibaricus exhibited maximum value of mean individual live weight (742.8 ± 21.1 mg), biomass gain (442.94 ± 21.8 mg), growth rate (2.95 ± 0.15 mg day−1), cocoon numbers (96.0 ± 5.1) and reproduction rate (cocoons worm−1 day−1) (0.034 ± 0.001) in T2 treatment. In T3 maximum mortality (30.0 ± 4.01 %) in earthworm population was observed. Overall, T2 vermibed appeared as an ideal substrate to manage guar gum industrial waste effectively. Vermicomposting can be proposed as a low-input basis technology to convert industrial waste into value-added biofertilizer.  相似文献   

13.
We examined the physiological and morphological response patterns of plains cottonwood [Populus deltoides subsp. monilifera (Aiton) Eck.] to acute water stress imposed by groundwater pumping. Between 3 and 27 July 1996, four large pumps were used to withdraw alluvial groundwater from a cottonwood forest along the South Platte River, near Denver, Colorado, USA. The study was designed as a stand-level, split-plot experiment with factorial treatments including two soil types (a gravel soil and a loam topsoil over gravel), two water table drawdown depths (∼0.5 m and >1.0 m), and one water table control (no drawdown) per soil type. Measurements of water table depth, soil water potential (Ψs), predawn and midday shoot water potential (Ψpd and Ψmd), and D/H (deuterium/hydrogen) ratios of different water sources were made in each of six 600-m2 plots prior to, during, and immediately following pumping. Two additional plots were established and measured to examine the extent to which surface irrigation could be used to mitigate the effects of deep drawdown on P. deltoides for each soil type. Recovery of tree water status following pumping was evaluated by measuring stomatal conductance (g s ) and xylem water potential (Ψxp) on approximately hourly time steps from before dawn to mid-afternoon on 11 August 1996 in watered and unwatered, deep-drawdown plots on gravel soils. P. deltoides responded to abrupt alluvial water table decline with decreased shoot water potential followed by leaf mortality. Ψpd and percent leaf loss were significantly related to the magnitude of water table declines. The onset and course of these responses were influenced by short-term variability in surface and ground water levels, acting in concert with physiological and morphological adjustments. Decreases in Ψpd corresponded with increases in Ψmd, suggesting shoot water status improved in response to stomatal closure and crown dieback. Crown dieback caused by xylem cavitation likely occurred when Ψpd reached −0.4 to −0.8 MPa. The application of surface irrigation allowed trees to maintain favorable water status with little or no apparent cavitation, even in deep-drawdown plots. Two weeks after the partial canopy dieback and cessation of pumping, g s and Ψxp measurements indicated that water stress persisted in unwatered P. deltoides in deep-drawdown plots.  相似文献   

14.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

15.
In the Mediterranean region the intensities and amounts of soil loss and runoff on sloping land are governed by rainfall pattern and vegetation cover. Over a two-year period (1998–1999), six wild species of aromatic and mellipherous plants (Thymus serpylloides subsp. Gadorensis, Thymus baeticus Boiss, Salvia lavandulifolia Vahl., Santolina rosmarinifolia L., Lavandula stoechas L. and Genista umbellata Poiret) were selected for erosion plots to determine their effectiveness in reducing water erosion on hillslopes of the Sierra Nevada Mountain (SE Spain). The erosion plots (including a bare-soil plot as control), located at 1,345 m in altitude, were 2 m2 (2 m × 1 m) in area and had 13% incline. The lowest runoff and soil erosion rates, ranging from 9 to 26 mm yr−1 and from 0.01 to 0.31 Mg ha−1 yr−1, respectively, over the entire study period, were measured under the Thymus serpylloides. Lavandula stoechas L. registered the highest rates among the plant covers tested, runoff ranging from 77 to 127 mm yr−1 and erosion from 1.67 to 3.50 Mg ha−1 yr−1. In the bare-soil plot, runoff ranged from 154 to 210 mm yr−1 and erosion from 4.45 to 7.82 Mg ha−1 yr−1. According to the results, the lowest-growing plant covers (Thymus serpylloides and Salvia lavandulifolia Vahl.) discouraged the soil erosion and runoff more effectively than did the taller and open medium-sized shrubs (Santolina rosmarinifolia L., Genista umbellata Poiret, Thymus baeticus Boiss and Lavandula stoechas L.). Monitoring allowed more direct linkage to be made between plant covers and the prevention of erosion, with implications for sustainable mountain agriculture and environmental protection.  相似文献   

16.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

17.
Age dependency of [3H]-ouabain binding, 45Ca2+ eflux and its magnetosensitivity in rats’ brain cortex and heart muscle tissues were studied. Curves of dose-dependent [3H]-ouabain binding consisted of three components with different affinities (10−7–10−4 M (α1); 10−9–10−7 M (α2); and 10−11–10−9 M (α3)). These curves were also characterized by different dose-dependent kinetics. [3H]-ouabain binding with α3 receptors in brain cortex and heart muscle tissues of young and adult animals had a dose-dependent character, while that in old ones had a dose-independent character. A 0.2 T static magnetic field (SMF) exposure had modulation effect on ouabain binding with α1, α2 and α3 receptors in young rats, while in adult ones, only α3 receptors were magnetosensitive. In old animals, SMF exposure had no significant effect on ouabain binding with α3 receptors in brain cortex, while in heart muscle, it had inhibitory effect on it. Age-dependent effect of ouabain impact on 45Ca2+ efflux showed that all concentrations of ouabain lead to inhibitory effect in young animals’ brain cortex and heart muscle (with the exception of 10−10 and 10−6 M), while in old ones, it had activation effect as compared with data received without ouabain. SMF exposure in young animals had activation effect on 45Ca2+ efflux from brain cortex and heart muscle in data without ouabain, and in old rats, 45Ca2+ efflux from brain cortex was magnetic insensitive. In old animals, SMF increased 45Ca2+ efflux even after extra low concentration of ouabain. It is suggested that α3 receptors having a crucial role in the regulation of Na+/Ca2+ exchange serve as age-dependent magnetosensors of excitable cells.  相似文献   

18.
Increasing phosphorus (P) content and decreasing water quality of Saint-Augustin Lake, Quebec City, Canada, has led to implementation of an Integrated Watershed Management Plan to restore the lake. As a part of the plan, the effects of different restoration techniques on lake water quality and biological community (i.e., biological compatibility) were assessed during an isolated water enclosure study and laboratory microcosm assay, respectively. The restoration techniques include: (i) coagulation of P by alum only (20 mg L−1), (ii) active capping of sediments using a calcite layer of 10 cm, and (iii) a complete method involving both alum coagulation and calcite capping. The results showed that the total P (TP) was greatly decreased (76–95 %) by alum + calcite, followed by calcite only (59–84 %). Secchi depth was 106 % greater and chlorophyll a concentrations were declined by 19–78 % in the enclosure which received both alum and calcite. Results of the biological compatibility test showed that total phytoplankton biomass declined by 31 % in microcosms composed of alum + calcite. No significant (P > 0.05) toxic effect was found on the survival of Daphnia magna and Hyalella azteca in both alum only and alum + calcite microcosms. Although the alum + calcite technique impaired the survival of Chironomus riparius, the midge emergence was much higher compared to alum only and control. Overall, the alum + calcite application was effective in controlling P release from sediment and lowering water column P concentrations, and thus improving the water quality and aquatic life of Saint-Augustin Lake. However, the TP concentrations are still higher than the critical limit (20 μg L−1) for aquatic life and the water column remained in the eutrophic state even after treatment. Increased TP concentrations, to higher than ambient levels of the lake, in the water column of all four enclosures, due to bioturbation artefact triggered by the platform installation, likely cause insufficient dosages of alum and/or calcite applied and reduced their effectiveness.  相似文献   

19.
The potential of the epigeic earthworm Eisenia fetida to stabilize sludge␣(generated from a distillation unit of the sugar industry) mixed with cow dung, in different proportions i.e. 20% (T1), 40% (T2), 60% (T3) and 80% (T4) has been studied under laboratory conditions for 90 days. The␣ready vermicompost was evaluated for its’ different physico-chemical parameters using standard methods. At the end of experiment, all vermibeds expressed a significant decrease in pH (7.8–19.2%) organic C (8.5–25.8%) content, and an increase in total N (130.4–170.7%), available P (22.2–120.8%), exchangeable K (104.9–159.5%), exchangeable Ca (49.1–118.1%), and exchangeable Mg (13.6–51.2%) content. Overall, earthworms could maximize decomposition and mineralization efficiency in bedding with lower proportions of distillery sludge. DTPA extractable metal reduction in substrate was recorded between the ranges of 12.5–38.8% for Zn, 5.9–30.4% for Fe, 4.7–38.2% for Mn and 4.5–42.1% for Cu. Maximum values for the mean individual live weight (809.69 ± 20.09 mg) and maximum individual growth rate (mg wt. worm−1 day−1) (5.81 ± 0.18) of earthworms was noted in T1 treatment, whereas cocoon numbers (69.0 ± 7.94) and individual reproduction rate (cocoon worm−1 day−1) (0.046 ± 0.002) was highest in T2 treatment. Earthworm mortality tended to increase with increasing proportion of distillery sludge, and maximum mortality in E. fetida was recorded for the T4 (45.0 ± 5.0) treatment. Results indicate that vermicomposting might be useful for managing the energy and nutrient rich distillery sludge on a low-input basis. Products of this process can be used for sustainable land restoration practices. The feasibility of worms to mitigate the toxicity of metals also reduces the possibility of soil contamination, which has been reported in earlier studies during direct field application of industrial wastes.  相似文献   

20.
Thirty-eight different milk and milk powder samples from Tehran-Iran were collected and analyzed for 90Sr activity using a method in which the daughter product of 90Sr decay (90Y) was extracted by tributyl phosphate from ashed milk. 90Y was then back extracted with water, and oxalate was precipitated . Following the sample analyzing, beta counting was performed with an ultralow-level liquid scintillation spectrometer. The quality control and assurance of the method were obtained by standard samples prepared with an IAEA-certified reference material. The mean determined 90Sr activity concentration in the analyzed milk and milk powder (0.225 ± 0.042 and 0.216 ± 0.024 Bq kg−1, respectively) showed that the radioactivity concentration in our samples was too low to induce biological hazards. These data can provide useful information of the background level of contamination, which in turn can be used in the following environmental monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号