首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   

2.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

3.
Pesticide degradates account for a significant portion of the pesticide load in surface water. Because pesticides with similar structures may degrade to the same degradate, it is important to distinguish between different sources of parent compounds that have different regulatory and environmental implications. A discrimination diagram, which is a sample plot of chemical data that differentiates between different parent compounds, was used for the first time to distinguish whether sources other than atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) contributed the chlorinated degradate, deisopropylatrazine (DIA; 6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine) to the Iroquois and Delaware Rivers. The concentration ratio of deisopropylatrazine to deethylatrazine [6-chloro-N-(1-methylethyl)1,3,5-triazine-2,4-diamine], called the D2R, was used to discriminate atrazine as a source of DIA from other parent sources, such as cyanazine (2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile) and simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4diamine). The ratio of atrazine to cyanazine (ACR) used in conjunction with the D2R showed that after atrazine, cyanazine was the main contributor of DIA in surface water. The D2R also showed that cyanazine, and to a much lesser extent simazine, contributed a considerable amount (approximately 40%) of the DIA that was transported during the flood of the Mississippi River in 1993. The D2R may continue to be a useful discriminator in determining changes in the nonpoint sources of DIA in surface water as cyanazine is currently being removed from the market.  相似文献   

4.
The contamination of soil and runoff water by two herbicides, diuron [N'-(3,4-dichlorphenyl)-N,N-dimethylurea] and simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), were monitored on two fields, one no-till and one tilled. Experiments were carried out in a 91.4-ha watershed in southern France during the 1997 growing season in order to understand the patterns of pesticide transport from field to watershed. The persistence of the herbicides in soil was prolonged due to the climatic conditions. At the field scale, annual herbicide loads were due to overland flow and amounted to 65.6 and 6.3 g ha(-1) of diuron for the no-till and tilled field, respectively, and to 29.6 and 1.83 g ha(-1) of simazine. Maximum herbicide concentrations exceeded 580 microg L(-1) during the first storm event after application and decreased thereafter but remained for 8 mo above 0.1 microg L(-1). At the watershed outlet, estimated annual loads amounted to 4.12 g ha(-1) of diuron and 0.56 g ha(-1) of simazine. Among them, 96% of the losses in diuron and 83% of those in simazine were caused by the fast transmission through the network of ditches of the overland flow exiting the fields. For diuron, which was sprayed over most of the vineyards, its in-stream concentrations during storm flow were close to those at the outlet of the fields. The herbicide loads in baseflow were smaller than 0.2 g ha(-1). The patterns of the loads at the field and watershed scales suggested that a major part of the herbicides leaving the fields reinfiltrated to the ground water by seepage through the ditches, and was there degraded or adsorbed.  相似文献   

5.
Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) losses via runoff in California are a potential source of environmental contamination because simazine is widely used for weed control during the rainy season from November to March. This study was conducted in two citrus orchards from three rainfall events to evaluate the effects of shallow mechanical incorporation on simazine losses in runoff during the winter. Simazine losses in runoff were compared between row middles that were either undisturbed, the normal orchard practice, or subjected to shallow mechanical incorporation. Mechanical incorporation of row middles significantly reduced runoff volumes by approximately 45 and 28% for the first and second runoff events, respectively. In undisturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.62 to 0.73 mg L(-1); then simazine concentrations rapidly decreased (0.03-0.35 mg L(-1)) from the second and third runoff events. In disturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.21 to 0.24 mg(-1), but simazine concentrations remained relatively constant between the three runoff events. Total mass recoveries of simazine in runoff ranged from 1.93 to 2.97% and from 0.70 to 0.74% of application from the undisturbed plots and from the disturbed plots, respectively. Low water infiltration rate inhibited surface-applied herbicide incorporation into the soil matrix with natural rainfall in compacted soils. Mechanical incorporation of row middles significantly reduced runoff volumes, simazine concentrations, and mass losses in runoff after application.  相似文献   

6.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is retained against leaching losses in soils principally by sorption to organic matter, but the mechanism of sorption has been a matter of controversy. Conflicting evidence exists for proton transfer, electron transfer, and hydrophobic interactions between atrazine and soil humus, but no data are conclusive. In this paper we add to the database by investigating the role of (i) hydroxyatrazine (6-hydroxy-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and (ii) hydrophobicity in the sorption of atrazine by Brazilian soil humic substances. We demonstrate, apparently for the first time, that hydroxyatrazine readily forms electron-transfer complexes with humic substances. These complexes probably are the cause of the well-known strong adsorption by humic acids and they may be the undetected cause of apparent electron-transfer complexes between soil organic matter and atrazine, whose transformation to the hydroxy form is facile. We also present evidence that supports the important contribution of hydrophobic interactions to the pH-dependent sorption of atrazine by humic substances.  相似文献   

7.
An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study. Metolachlor [2-chloro--(2-ethyl-6-methylphenyl)--(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] were coapplied as a surface broadcast spray. Herbicide runoff was monitored from a month before application through harvest. A flux gradient technique was used to compute volatilization fluxes for the first 5 d after application using herbicide concentration profiles and turbulent fluxes of heat and water vapor as determined from eddy covariance measurements. Results demonstrated that volatilization losses for these two herbicides were significantly greater than runoff losses ( < 0.007), even though both have relatively low vapor pressures. The largest annual runoff loss for metolachlor never exceeded 2.5%, whereas atrazine runoff never exceeded 3% of that applied. On the other hand, herbicide cumulative volatilization losses after 5 d ranged from about 5 to 63% of that applied for metolachlor and about 2 to 12% of that applied for atrazine. Additionally, daytime herbicide volatilization losses were significantly greater than nighttime vapor losses ( < 0.05). This research confirmed that vapor losses for some commonly used herbicides frequently exceeds runoff losses and herbicide vapor losses on the same site and with the same management practices can vary significantly year to year depending on local environmental conditions.  相似文献   

8.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) behavior was studied in four surface soils during incubations in laboratory conditions. Soils were chosen in relation to their cropping management (tillage and no tillage) and crop rotation system (continuous soybean [Glycine mar (L.) Merr.] and maize (Zea mays L.)-soybean rotation). A natural soil under brushwood was sampled as a reference. Atrazine use in field conditions was associated with maize cropping, thus only one soil received atrazine every other year. Atrazine behavior was characterized through the balance of 14C-U-ring atrazine radioactivity among the mineralized fraction, the extractable fraction, and the nonextractable bound residues. Soil organic matter capacity to form bound residues was characterized using soil size fractionation. Accelerated atrazine mineralization was only observed in the soil receiving atrazine in field conditions. Atrazine application every other year was enough to develop a microflora adapted to triazine ring mineralization. Bound residue formation was rapid and increased with soil organic matter content. The coarsest soil size fractions (2000-200 and 200-50 microm) containing the nonhumified organic matter presented the highest capacity to form bound residues. No effect of tillage system was observed, probably because of the uniform sampling depth at 20 cm, hiding the stratification pattern of soil organic matter in non-tilled soils.  相似文献   

9.
Terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] degradation pathways in agricultural soils were evaluated by following the appearance and mobility of its main transformation products: dealkylated and hydroxylated derivatives. Three experimental degradation studies in open field were performed in different hydraulic conditions: constant hydraulic head on topsoil, achieved to simulate the highest-risk situation for the aquifer, intermittent artificial precipitation to simulate a medium-risk situation; and natural precipitation to reproduce the lowest-risk condition. Concentrations of terbuthylazine transformation products derived from dealkylation and hydroxylation reactions were measured in leachates and soil samples collected during the three experiments. Desethylterbuthylazine (DET) and deethylterbuthylazine-2-hydroxide [DETH; 4-amino-6-terbutylamino-(1,3,5)-triazine-2-OH] were found to be the highest-leaching compounds and therefore can be considered as potential pollutants for aquifer contamination.  相似文献   

10.
Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings--in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides--triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.  相似文献   

11.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is frequently detected at high concentrations in ground water. Bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] plus alachlor (2-chloro-2',6'-diethyl-N-methoxymethylacetanilide) is a potential herbicide combination used as a substitute for atrazine. Thus, the objective of this study was to assess the environmental risk of this blend. Drainage water contamination by bentazone and alachlor was assessed in silty clay (Vertic Eutrochrept) and silt loam (Aquic Hapludalf) soils under the same management and climatic conditions. Drainage volumes and concentrations of alachlor and bentazone were monitored after application. Herbicides first arrived at the drains after less than 1 cm of net drainage. This is consistent with preferential flow and suggests that about 3% of the pore volume was active in rapid transport. During the monitoring periods, bentazone losses were higher (0.11-2.40% of the applied amount) than alachlor losses (0.00-0.28%) in the drains of the silty clay and silt loam. The rank order of herbicide mass losses corresponded with the rank order of herbicide adsorption coefficients. More herbicide residues were detected in drainage from the silty clay, probably due to preferential flow and more intensive drainage in this soil than the silt loam. Surprisingly, herbicide losses were higher in the drains of both soils in the drier of the two study years. This could be explained by the time intervals between the treatments and first drainage events, which were longer in the wetter year. Results suggest that the drainage phases occurred by preferential flow in the spring-summer period, with correspondingly fast leaching of herbicides, and by matrix flow during the fall-winter period, with slower herbicide migration.  相似文献   

12.
At Florida's southeastern tip, sweet corn (Zea Mays) is grown commercially during winter months. Most fields are treated with atrazine (6-chloro-N-ethyl-N'-[1-methylethyl]-1,3,5-triazine-2,4-diamine). Hydrogeologic conditions indicate a potential for shallow groundwater contamination. This was investigated by measuring the parent compound and three degradates--DEA (6-chloro-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine), DIA (6-chloro-N-ethyl)-1,3,5-triazine-2,4-diamine, and HA (6-hydroxy-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine)--in water samples collected beneath sweet corn plots treated annually with the herbicide. During the study, a potential mitigation measure (i.e., the use of a cover crop, Sunn Hemp [Crotalaria juncea L.], during summer fallow periods followed by chopping and turning the crop into soil before planting the next crop) was evaluated. Over 3.5 yr and production of four corn crops, groundwater monitoring indicated leaching of atrazine, DIA, and DEA, with DEA accounting for more than half of all residues in most samples. Predominance of DEA, which increased after the second atrazine application, was interpreted as an indication of rapid and extensive atrazine degradation in soil and indicated that an adapted community of atrazine degrading organisms had developed. A companion laboratory study found a sixfold increase in atrazine degradation rate in soil after three applications. Groundwater data also revealed that atrazine and degradates concentrations were significantly lower in samples collected beneath cover crop plots when compared with concentrations below fallow plots. Together, these findings demonstrated a relatively small although potentially significant risk for leaching of atrazine and its dealkylated degradates to groundwater and that the use of a cover crop like Sunn Hemp during summer months may be an effective mitigation measure.  相似文献   

13.
Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.  相似文献   

14.
Vegetated filter strips (VFS) potentially reduce the off-site movement of herbicides from adjacent agricultural fields by increasing herbicide mass infiltrated (Minf) and mass adsorbed (Mas) compared with bare field soil. However, there are conflicting reports in the literature concerning the contribution of Mas to the VFS herbicide trapping efficiency (TE). Moreover, no study has evaluated TE among atrazine (6-chloro-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) and atrazine metabolites. This study was conducted to compare TE, Minf, and Mas among atrazine, diaminoatrazine (DA, 6-chloro[1,3,5]triazine-2,4-diamine), deisopropylatrazine (DIA, 6-chloro-N-ethyl-[1,3,5]triazine-2,4-diamine), desethylatrazine (DEA, 6-chloro-N-isopropyl-[1,3,5]triazine-2,4-diamine), and hydroxyatrazine (HA, 6-hydroxy-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) in a buffalograss VFS. Runoff was applied as a point source upslope of a 1- x 3-m microwatershed plot at a rate of 750 L h(-1). The point source was fortified at 0.1 microg mL(-1) atrazine, DA, DIA, DEA, and HA. After crossing the length of the plot, water samples were collected at 5-min intervals. Water samples were extracted by solid phase extraction and analyzed by high performance liquid chromatography (HPLC) photodiode array detection. During the 60-min simulation, TE was significantly greater for atrazine (22.2%) compared with atrazine metabolites (19.0%). Approximately 67 and 33% of the TE was attributed to Minf and Mas, respectively. These results demonstrate that herbicide adsorption to the VFS grass, grass thatch, and/or soil surface is an important retention mechanism, especially under saturated conditions. Values for Mas were significantly higher for atrazine compared with atrazine's metabolites. The Mas data indicate that atrazine was preferentially retained by the VFS grass, grass thatch, and/or soil surface compared with atrazine's metabolites.  相似文献   

15.
This study quantified the effects of tillage (moldboard plowing [MP], ridge tillage [RT]) and nutrient source (manure and commercial fertilizer [urea and triple superphosphate]) on sediment, NH4+ -N, NO3- -N, total P, particulate P, and soluble P losses in surface runoff and subsurface tile drainage from a clay loam soil. Treatment effects were evaluated using simulated rainfall immediately after corn (Zea mays L.) planting, the most vulnerable period for soil erosion and water quality degradation. Sediment, total P, soluble P, and NH4+ -N losses mainly occurred in surface runoff. The NO3- -N losses primarily occurred in subsurface tile drainage. In combined (surface and subsurface) flow, the MP treatment resulted in nearly two times greater sediment loss than RT (P < 0.01). Ridge tillage with urea lost at least 11 times more NH4+ -N than any other treatment (P < 0.01). Ridge tillage with manure also had the most total and soluble P losses of all treatments (P < 0.01). If all water quality parameters were equally important, then moldboard plow with manure would result in least water quality degradation of the combined flow followed by moldboard plow with urea or ridge tillage with urea (equivalent losses) and ridge tillage with manure. Tillage systems that do not incorporate surface residue and amendments appear to be more vulnerable to soluble nutrient losses mainly in surface runoff but also in subsurface drainage (due to macropore flow). Tillage systems that thoroughly mix residue and amendments in surface soil appear to be more prone to sediment and sediment-associated nutrient (particulate P) losses via surface runoff.  相似文献   

16.
A lignocellulosic substrate (LS) obtained from our local agroindustry was used as a low-cost and effective adsorbent for the removal of pesticides from wastewaters. The studied pesticides were terbumeton (N-(1,1-dimethyl)-Nethyl-6-methoxy-1,3,5-triazine-2,4-diamine), desethyl terbumeton (N-(1,1-dimethylethyl)-6-methoxy-1,3,5-triazine-2,4-diamine), dimetomorph (4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine), and isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea). Batch and column experiments were conducted as a function of pH and pesticide concentration under laboratory and industrial conditions. The concentration range studied for the pesticides varied from 2 x 10(-7) to 3 x 10(-4) mol L(-1). The influence of organic and inorganic pollutants was assessed by studying the retention of pesticide in the presence of copper(II) and a surfactant. These experiments indicated that LS is an efficient adsorbent toward the investigated pesticides and has little influence of the other pollutants. The kinetic adsorptions are fast, and the amounts of adsorbed pesticide varied from 1 to 8 g kg(-1) of LS. These retention capacities show that LS can provide a simple, effective, and cheap method for removing pesticides from contaminated waters. Thus, this biomaterial may be useful for cleaning up polluted waters.  相似文献   

17.
In Nepal, soil erosion under maize (Zea mays) agro-ecosystems is most critical during the pre-monsoon season. Very few field experiments have been conducted on reduced tillage and rice straw (Oryza sativa) mulching, although these conservation approaches have been recommended. Thus, a five replicate field experiment was established in 2001 at Kathmandu University (1500 m above sea level) on land with 18% slope to evaluate the efficiency of reduced tillage and mulching on soil and nutrient losses and maize yield. The results showed non-significant differences among conservation approaches on runoff and maize yield. Mulching and reduced tillage significantly lowered annual and pre-monsoon soil and nutrient losses compared to conventional tillage. Soil organic matter (SOM) and nitrogen losses associated with eroded sediment were significantly higher in conventional tillage. However, due to limited availability and high opportunity cost of rice straw, reduced tillage would be a better option for soil and nutrient conservation without sacrificing economic yield in upland maize agro-ecosystems.  相似文献   

18.
A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.  相似文献   

19.
Runoff from farm fields is a common source of herbicide residues in surface waters. Incorporation by irrigation has the potential to reduce herbicide runoff risks. To assess impacts, rainfall was simulated on plots located in a peanut (Arachis hypogaea L.) field in Georgia's Atlantic Coastal Plain region after pre-emergence application of metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-methylethyl]-acetamide) and pendimethalin (N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine). Runoff, sediment, and herbicide loss as function of strip tillage (ST) versus conventional tillage (CT) were compared with and without irrigation (12.5 mm) after application of an herbicide tank mixture. For the CT system, metolachlor runoff was reduced 2x and pendimethalin 1.2x when compared with the non-irrigated treatment. The difference in irrigated and non-irrigated metolachlor means was significant (P = 0.05). Irrigation reduced metolachlor runoff by 1.3x in the ST system, but there was a 1.4x increase for pendimethalin. Overall results indicated that irrigation incorporation reduces herbicide runoff with the greatest impact when CT is practiced and products like metolachlor, which have relatively low K(oc) and high water solubility, are used. The lower ST system response was likely due to a combination of spray interception and retention by the ST system cover crop mulch and higher ST soil organic carbon content and less total runoff. During the study, the measured K(oc) of both herbicides on runoff sediment was found to vary with tillage and irrigation after herbicide application. Generally, K(oc) was higher for ST sediment and when irrigation incorporation was used with the CT system. These results have significant implications for simulation model parametization.  相似文献   

20.
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号