首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
ABSTRACT: Macroinvertebrates were used to assess the impact of urbanization on stream quality across a gradient of watershed imperviousness in 43 southeastern Wisconsin streams. The percentage of watershed connected imperviousness was chosen as the urbanization indicator to examine impact of urban land uses on macroinvertebrate communities. Most urban land uses were negatively correlated with the Shannon diversity index, percent of pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera individuals, and generic richness. Nonurban land uses were positively correlated with these same metrics. The Hilsenhoff biotic index indicated that stream quality declined with increased urbanization. Functional feeding group metrics varied across a gradient of urbanization, suggesting changes in stream quality. Proportions of collectors and gatherers increased, while proportions of filterers, scrapers, and shredders decreased with increased watershed imperviousness. This study demonstrated that urbanization severely degraded stream macroinvertebrate communities, hence stream quality. Good stream quality existed where imperviousness was less than 8 percent, but less favorable assessments were inevitable where imperviousness exceeded 12 to 20 percent. Levels of imperviousness between 8 and 12 percent represented a threshold where minor increases in urbanization were associated with sharp declines in stream quality.  相似文献   

2.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

3.
ABSTRACT: The impact of various urban land uses on water flow and quality in streams is being studied by monitoring small streams in the Milwaukee urban area. This paper compares the responses of an urban watershed and an agricultural watershed to an autumn rainfall of 2.2 cm. Flow from the urban basin showed a substantially greater response to the rain than that from the rural. Dilution, resulting from the greater quantities of surface runoff in the urban watershed, caused lower concentrations of sodium, chloride, calcium, magnesium, bicarbonate and total dissolved solids in the urban stream. The total quantity of these materials removed per unit drainage area of the urban basin was much greater, however. Road salt was still among the dominant dissolved materials in the urban water chemistry seven months after the last road salting. Sodium was apparently being released from adsorption by clays in the urban basin. Suspended sediment concentrations and total loads were higher in the urban stream.  相似文献   

4.
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis.  相似文献   

5.
ABSTRACT: Stream channels are known to change their form as a result of watershed urbanization, but do they restabilize under subsequent conditions of constant urban land use? Streams in seven developed and developing watersheds (drainage areas 5–35 km2) in the Puget Sound lowlands were evaluated for their channel stability and degree of urbanization, using field and historical data. Protocols for determining channel stability by visual assessment, calculated bed mobility at bankfull flows, and resurveyed cross‐sections were compared and yielded nearly identical results. We found that channel restabilization generally does occur within one or two decades of constant watershed land use, but it is not universal. When (or if) an individual stream will restabilize depends on specific hydrologic and geomorphic characteristics of the channel and its watershed; observed stability is not well predicted by simply the magnitude of urban development or the rate of ongoing land‐use change. The tendency for channel restabilization suggests that management efforts focused primarily on maintaining stability, particularly in a still‐urbanizing watershed, may not always be necessary. Yet physical stability alone is not a sufficient condition for a biologically healthy stream, and additional rehabilitation measures will almost certainly be required to restore biological conditions in urban systems.  相似文献   

6.
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream.  相似文献   

7.
城市河流近自然治理--概念构架与治理设计   总被引:6,自引:0,他引:6  
河流是城市生态系统的重要组成部分,是城市的自然元素和景观组分,具有提供水生生物生境和水源、调节小气候、美化城市、休闲娱乐等多种生态服务功能.随着城市化进程的飞速发展,城市河流生态系统面临着生物多样性减少、污染加剧等多方面的危害.如何恢复受损的城市河流生态系统已经成为我们的当务之急.对城市河流的生态结构及其在城市中的生态功能进行了简要介绍,讨论了河流生态恢复的近自然方法,并对现有的河流生态恢复存在的问题及发展趋势提出了几点看法.  相似文献   

8.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

9.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

10.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

11.
We analyzed the relation of the amount and spatial pattern of land cover with stream fish communities, in-stream habitat, and baseflow in 47 small southeastern Wisconsin, USA, watersheds encompassing a gradient of predominantly agricultural to predominantly urban land uses. The amount of connected impervious surface in the watershed was the best measure of urbanization for predicting fish density, species richness, diversity, and index of biotic integrity (IBI) score; bank erosion; and base flow. However, connected imperviousness was not significantly correlated with overall habitat quality for fish. Nonlinear models were developed using quantile regression to predict the maximum possible number of fish species, IBI score, and base flow for a given level of imperviousness. At watershed connected imperviousness levels less than about 8%, all three variables could have high values, whereas at connected imperviousness levels greater than 12% their values were inevitably low. Connected imperviousness levels between 8 and 12% represented a threshold region where minor changes in urbanization could result in major changes in stream condition. In a spatial analysis, connected imperviousness within a 50-m buffer along the stream or within a 1.6-km radius upstream of the sampling site had more influence on stream fish and base flow than did comparable amounts of imperviousness further away. Our results suggest that urban development that minimizes amount of connected impervious surface and establishes undeveloped buffer areas along streams should have less impact than conventional types of development.  相似文献   

12.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

13.
ABSTRACT: Water quality and nonpoint source (NPS) pollution are important issues in many areas of the world, including the Inner Bluegrass Region of Kentucky where urban development is changing formerly rural watersheds into urban and mixed use watersheds. In watersheds where land use is mixed, the relative contributions of NPS pollution from rural and urban land uses can be difficult to separate. To better understand NPS pollution sources in mixed use watersheds, surface water samples were taken at three sites that varied in land use to examine the effect of land use on water quality. Within the group of three watersheds, one was predominately agriculture (Agricultural), one was predominately urban (Urban), and a third had relatively equal representation of both types of land uses (Mixed). Nitrogen (N), phosphorus (P), total suspended solids (TSS), turbidity, pH, temperature, and streamflow were measured for one year. Comparisons are made among watersheds for concentration and fluxes of water quality parameters. Nitrate and orthophosphate concentrations were found to be significantly higher in the Agricultural watershed. Total suspended solids, turbidity, temperature, and pH, were found to be generally higher in the Urban and Mixed watersheds. No differences were found for streamflow (per unit area), total phosphorus, and ammonium concentrations among watersheds. Fluxes of orthophosphate were greater in the Agricultural watershed that in the Urban watershed while fluxes of TSS were greater in the Mixed watershed when compared to the Agricultural watershed. Fluxes of nitrate, ammonium, and total phosphorus did not vary among watersheds. It is apparent from the data that Agricultural land uses are generally a greater source of nutrients than the Urban land uses while Urban land uses are generally a greater source of suspended sediment.  相似文献   

14.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

15.
Abstract: We describe relationships between pH, specific conductance, calcium, magnesium, chloride, sulfate, nitrogen, and phosphorus and land‐use patterns in the Mullica River basin, a major New Jersey Pinelands watershed, and determine the thresholds at which significant changes in water quality occur. Nonpoint sources are the main contributors of pollutants to surface waters in the basin. Using multiple regression and water‐quality data for 25 stream sites, we determine the percentage of variation in the water‐quality data explained by urban land and upland agriculture and evaluate whether the proximity of these land uses influences water‐quality/land‐use relationships. We use a second, independently collected water‐quality dataset to validate the statistical models. The multiple‐regression results indicate that water‐quality degradation in the study area is associated with basin‐wide upland land uses, which are generally good predictors of water‐quality conditions, and that both urban land and upland agriculture must be included in models to more fully describe the relationship between watershed disturbance and water quality. Including the proximity of land uses did not improve the relationship between land use and water quality. Ten‐percent altered‐land cover in a basin represents the threshold at which a significant deviation from reference‐site water‐quality conditions occurs in the Mullica River basin.  相似文献   

16.
Elevated levels of P in urban streams can pose significant water quality problems. Sources of P in urban streams, however, are difficult to identify. It is important to recognize both natural and anthropogenic sources of P. We investigated near-stream chemistry and land use factors on stream water P in the urbanizing Johnson Creek watershed in Portland, OR, USA. We sampled stream water and shallow groundwater soluble reactive P (SRP) and total P (TP) and estimated P flux at 13 sites along the main stem of Johnson Creek, with eight sites in urban land use areas and five sites in nonurban land use areas. At each site, we sampled the A and B horizons, measuring soil pH, water-soluble P, acid-soluble P, base-soluble P, total P, Fe, and Al. We found continuous input of P to the stream water via shallow groundwater throughout the Johnson Creek watershed. The shallow groundwater P concentrations were correlated with stream water P within the nonurban area; however, this correlation was not found in the urban area, suggesting that other factors in the urban area masked the relationship between groundwater P and stream water P. Aluminum and Fe concentrations were inversely correlated with shallow groundwater P, suggesting that greater P adsorption to Al and Fe oxides in the nonurban area reduced availability of shallow groundwater P. Using stepwise multiple regression analysis, however, we concluded that while riparian soil chemistry was related to stream water P, land use patterns had a more significant relationship with stream water P concentrations in this urbanizing system.  相似文献   

17.
In all, 13 stream water-quality parameters, including specific conductance (SC), pH, dissolved oxygen (DO), dissolved organic carbon (DOC), three nutrients, and six major ions were compared between the northern bedrock and southern coastal plain regions of New Jersey, USA and related to watershed-disturbance gradients characterized by the percentage of urban land, impervious surface (IS), agriculture, and altered land (sum of urban land and agriculture) in the watersheds. SC, DO, calcium, magnesium, sodium, and chloride concentrations were greater in the north. DOC was higher and pH was lower in the south. Nutrient, potassium, and sulfate concentrations did not differ between regions. Regional water-quality differences are attributed to geologic setting and land use. Except for DO in southern streams, all water-quality parameters were related to urban land, agriculture, or both. Significant correlations between urban land and IS and water-quality variables were similar in both regions with differences in unitless correlation coefficients ranging from 0.00 to 0.06. Compared to urban land and agriculture, relationships between most water-quality variables and altered land were stronger in the south. The extent of urban and agricultural lands in the watersheds did not differ by region. Altered land was correlated with urban land in both regions and with agriculture only in the south. Although focused on New Jersey, this study has broader implications for watershed planning.  相似文献   

18.
Urban parks in India are often discussed as positive environmental projects, and their creation appears as unproblematic in public discourse. This paper presents the creation of a municipal park in a small city in Gujarat, India. Using insights from history and architecture, we stress the importance of reading parks as political and to some extent ideological projects in the larger context of city-making. The political ecology and history of the particular park studied here allow us to problematise the socio-ecological project of urban “beautification” via park creation. The municipal park, established in the centre of a small urban agglomeration after displacing a slum settlement from the site, is – as we argue – an integral part of a local geography of power. As such it expresses several registers of values upheld by local elites and brings into focus highly conflictive social relations. The case study contributes to further developing a situated urban political ecological approach that starts theorising cities from the South. It moreover offers a critical perspective on the understudied urban nature of small towns.  相似文献   

19.
This paper describes an applied research project that used a sustainable land-use planning approach to examine flood hazard mitigation alternatives in a 536-acre developed office park complex. A watershed-wide assessment including floodplain remapping and modelling of low-impact and large stormwater improvements throughout the upper watershed revealed limited impact on reducing flooding downstream in the environs of the office park during large storms. Thus emphasis had to be given to recommending retroactive sustainable land-use development actions such as relocating buildings and roadways out of the 100-year floodplain, which involves creating a mixed-use overlay district on high elevations, and restoring the floodplain.  相似文献   

20.
ABSTRACT: Over a three‐year period, flow and nutrients were monitored at 13 sites in the upper North Bosque River watershed in Texas. Drainage areas above sampling sites differed in percent of dairy waste application fields, forage fields, wood/range, and urban land area. A multiple regression approach was used to develop total phosphorus (TP) and total nitrogen (TN) export coefficients for the major land uses in these heterogeneous drainage areas. The largest export coefficients were associated with dairy waste application fields followed by urban, forage fields, and wood/range. An empirical model was then established to assess nutrient contribution by major sources using developed export coefficients and point source loadings from municipal wastewater treatment. This model was verified by comparison of estimated loadings to measured in‐stream data. Monte Carlo simulation techniques were applied to provide an uncertainty analysis for nutrient loads by source, based on the variance associated with each export coefficient. The largest sources of nutrients contributing to the upper North Bosque River were associated with dairy waste application fields and forage fields, while the greatest relative uncertainty in source contribution was associated with loadings from urban and wood/range land uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号