首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ABSTRACT: A new polypropylene sheeting compound, DuPont Typar 3201 and 3301, was applied to the sediments of Country Lake (Portage Co., Ohio) in March 1978 after an overwinter drawdown, and regrowth of rooted macrophytes was compared to an adjacent control area in summer 1978. Regrowth was slight, and macrophyte biomass was at least 100X less than in controls. The sheeting material was permeable to gases and did not “balloon.” This material is recommended for use around docks, swimming areas, and boat mooring sites. Cost in 1978 was about $0.24/m2.  相似文献   

2.
ABSTRACT: Recovery of eutrophic lakes after nutrient diversion may be delayed if the lake experiences significant internal phosphorus (p) loading to the water column. A maximum dose of aluminum sulfate, defined herein, was applied to the anaerobic sediments of the hypolimnia of two dimictic Ohio lakes following septic tank diversion, with the objective of attaining long term control of the release of phosphorus to the water column from these sediments. The results were compared to a similar, downstream, untreated lake. Total phosphorus concentration declined sharply after treatment and has remained so through 1980 for both lakes, a period of 5 and 6 years of control, respectively. Internal P loading from anaerobic, hypolimnetic sediments was partially controlled by the treatment but there are other important sources, perhaps in the littoral zone, in these lakes. Algal biomass is Smaller and water transparency has increased. Both lakes became mesotrophic after treatment, as described by the Carlson (1977) trophic state index, and remain in that improved condition to date. No deleterious side effects were observed, although one lake experienced a significant decrease in diversity of planktonic microcrustacea and a lakeward extension of the macrophyte community. This method appears to be an effective and lasting means of accelerating the recovery of a eutrophic lake following nutrient diversion.  相似文献   

3.
ABSTRACT: Fresh water lake sediment removal is usually undertaken to deepen a lake and increase its volume to enhance fish production, to remove nutrient rich sediment, to remove toxic or hazardous material, or to reduce the abundance of rooted aquatic plants. Review of more than 60 projects and five case histories reveals that the first three objectives are usually met through sediment removal. Dredging to control aquatic plants has not been well documented. Disadvantages of dredging include cost, temporary phosphorus release from sediment, increased phytoplankton productivity, noise, lake drawdown, temporary reduction in benthic fish food organisms, the potential for toxic material release to the overlying water and potential for environmental degradation at the dredged material disposal site. The technique is recommended for deepening and for long range reduction of phosphorus release from sediment. Sediment removal to control toxic materials is possible with minimal environmental impact when proper equipment is used, but it may more than double the cost. Lack of definitive information about rooted plant regrowth rates in dredged areas prohibits explicit recommendations on sediment removal to control plant growth.  相似文献   

4.
ABSTRACT: Laboratory microcosms were used to evaluate the effect of pH on release of soluble reactive phosphorus (SRP) during aerobic decomposition of the aquatic macrophyte Eleocharis sp., which is common in oligotrophic Florida lakes. The total amount of SRP released during a 227-day incubation in the dark was independent of pH over the range 3.7 to 5.5, but initial rates of release were faster at the lowest pH. The results indicate that the low total phosphorus concentrations observed in many acidic lakes are not necessarily attributable to reduced rates of decomposition and nutrient mineralization at low pH, as some researchers have suggested.  相似文献   

5.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

6.
上覆水营养盐浓度对底泥氮磷释放的影响   总被引:2,自引:0,他引:2  
采用校园水体底泥进行上覆水营养盐浓度对底泥释放量之间的关系研究。结果表明,在本实验条件下,上覆水水质影响底泥氮、磷的释放,尤其显著影响氮、磷的初期释放;上覆水氮、磷的浓度越小,底泥氮、磷的释放量越大;上覆水氮、磷的浓度超过一定值,会抑制底泥氮、磷的释放。  相似文献   

7.
There is a growing evidence that the ecological and biological integrity of the lagoon has declined during the last 50 years, probably due to the decline in water quality. Establishment of a watershed scale seagrass-based nutrient load assessment is the major aim of water quality management in the Indian River Lagoon (IRL). Best estimate loadings incorporate wet and dry deposition, surface water, groundwater, sediment nutrient flux, and point source effluent discharge data. On the average, the IRL is receiving annual external loadings of 832, 645 and 94,476kg of total nitrogen (TN) and total phosphorus (TP), respectively, from stormwater discharges and agricultural runoff. The average internal cycling of TN and TP from sediment deposits in the IRL was about 42,640kg TN and 1050kg TPyr(-1). Indirect evidence suggests that atmospheric deposition has played a role in the ongoing nutrient enrichment in the IRL. The estimated total atmospheric deposition of TN and TP was about 32,940 and 824kgyr(-1), while groundwater contribution was about 84,920 and 24,275kgyr(-1), respectively, to the surface waters of the IRL. The estimated annual contribution of point effluent discharge was about 60,408kg TN and 7248kg TP. In total, the IRL basin is receiving an annual loading of about 1,053,553kg TN and 127,873kg TP. With these results, it is clear that the current rate of nutrient loadings is causing a shift in the primary producers of the IRL from macrophyte to phytoplankton- or algal-based system. The goal is to reverse that shift, to attain and maintain a macrophyte-based estuarine system in the IRL.  相似文献   

8.
A free water surface wetland was built to treat wastewater containing metals (Cr, Ni, Zn) and nutrients from a tool factory in Argentina. Water, sediment and macrophytes were sampled in the inlet and outlet area of the constructed wetland during three years. Three successive phases of vegetation dominance were developed and three different patterns of contaminant retention were observed. During the Eichhornia crassipes dominance, contaminants were retained in the macrophyte biomass; during the E. crassipes+Typha domingensis stage, contaminants were retained in the sediment and in the T. domingensis dominance stage, contaminants were retained in sediment and in the macrophyte biomass. Removal efficiency was not significantly different among the three vegetation stages, except for NH(4)(+) and i-P(diss). Because of its highest tolerance, T. domingensis is the best choice to treat wastewater of high pH and conductivity with heavy metals, a common result from many industrial processes.  相似文献   

9.
ABSTRACT: Bathymetric and sedimentation surveys were conducted using a dual frequency (28/200 kHz) echo sounder system in two reservoirs (Lee Creek Reservoir and Lake Shepherd Springs) in the Ozark Plateau of northwestern Arkansas. Echo sounder survey data were merged within geographic information system (GIS) software to provide detailed visualization and analyses of current depths, pre‐impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, time averaged sediment accumulation rates, long term average annual sediment flux, and water storage capacity. Calculated long term average sediment accumulation rates were used to model sediment infilling and projected lifetimes of each reservoir. Results from echo sounder surveys and GIS analyses suggest that the Lee Creek Reservoir has a projected lifetime of approximately 500 years compared to a projected lifetime for Lake Shepherd Springs of approximately 3,000 years. Estimated differences in projected lifetimes of these reservoirs reflected differences in initial reservoir volume and long term average annual sediment flux from the respective watersheds related to watershed area, physiography, land cover, and land use. The universal soil loss equation (USLE) model generated sediment fluxes an order of magnitude larger from the watersheds of both reservoirs compared to the geophysical data estimates. This study demonstrated the utility of merging geophysical survey (echo sounder) data within a GIS as an aid to understanding patterns of reservoir sedimentation. These data and analyses also provide a baseline relevant to understanding sedimentation processes and are necessary for development of long term management plans for these reservoirs and their watersheds.  相似文献   

10.
ABSTRACT: Nutrient diversion does not always bring about prompt and sufficient reduction in lake phosphorus concentration due to recycling from nutrient rich sediments. Certain lakes and reservoirs may continue to experience nuisance algal blooms and require additional restorative steps. The phosphorus precipitation/inactivation technique is a procedure to remove phosphorus from the water column and to control its release from sediments in order to achieve P-limiting conditions to algal growth. Aluminum salts have been used in advanced waste water treatment to remove phosphorus and this technology was extended to lake rehabilitation. Guidelines for dose calculation and application are generally lacking, and are provided in this report. The dose determination suggested here allows maximum application of aluminum to bottom sediments and thus emphasizes long term control of phosphorus recycling. Dose can be calculated directly from the alkalinity of the water to be treated. Titration of lake water samples of Varying alkalinity allows the establishment of the relationship between residual dissolved aluminum, alkalinity, and dose which can then be employed for lake scale applications of alum to lakes and reservoirs. Application equipment and procedures are described. These depend on site characteristics and treatment objectives and include lakeside stores, a distribution pipe, and an application barge and manifold. Alum may also be used to meet other restoration objectives including the treatment of problem flows and the reduction of particulate concentrations.  相似文献   

11.
We applied the complex ecosystem model EMMO, which was adopted to the shallow lake Müggelsee (Germany), in order to evaluate a large set of ecological scenarios. By means of EMMO, 33 scenarios and 17 indicators were defined to characterize their effects on the lake ecosystem. The indicators were based on model outputs of EMMO and can be separated into biological indicators, such as chlorophyll-a and cyanobacteria, and hydro-chemical indicators, such as phosphorus. The question to be solved was, what is the ranking of the scenarios based on their characterization by these 17 indicators? And how can we handle high quantities of complex data within evaluation procedures? The scenario evaluation was performed by partial order theory which, however, did not provide a clear result. By subsequently applying the hierarchical cluster analysis (complete linkage) it was possible to reduce the data matrix to indicator and scenario representatives. Even though this step implies losses of information, it simplifies the application of partial order theory and the post processing by METEOR. METEOR is derived from partial order theory and allows the stepwise aggregation of indicators, which subsequently leads to a distinct and clear decision. In the final evaluation result the best scenario was the one which defines a minimum nutrient input and no phosphorus release from the sediment while the worst scenario is characterized by a maximum nutrient input and extensive phosphorus release from the sediment. The reasonable and comprehensive results show that the combination of partial order, cluster analysis and METEOR can handle big amounts of data in a very clear and transparent way, and therefore is ideal in the context of complex ecosystem models, like that we applied.  相似文献   

12.
Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient‐enriched floodplain soils could pose a long‐term source of sediment and nutrients to downstream rivers.  相似文献   

13.
内源磷的释放作用及影响因素研究进展   总被引:1,自引:0,他引:1  
梁文  王泽  焦增祥  万俊 《四川环境》2012,(5):105-109
水体的富营养化已成为目前环境研究中的焦点问题,磷在湖泊中的浓度高低是衡量湖泊富营养化水平的重要指标,是水生态系统基本营养盐之一,并且是淡水湖泊的最主要限制性营养因子。在外源磷得到有效的控制之后,内源磷的污染仍然能够保持湖泊的富营养化状态,此时内源磷的控制就成为了难点和重点。在底泥中的结合态磷,主要是以无机磷和有机磷的形式存在,有机磷与微生物活性密切相关,无机磷则主要与底泥存在的环境联系紧密。湖泊底泥内源磷释放受到一系列物理、化学、生物过程的控制,其影响因素主要包括扰动、氧化还原电位、pH值等,是多种因子综合作用的结果,同时,扰动引起的底泥再悬浮对内源磷有吸附固定作用。故底泥内源磷的释放机理有待进一步探索,在多种影响因素作用下,进一步研究底泥再悬浮对磷的吸附释放作用,从而明确内源磷的主要来源及吸附释放过程,为内源磷的控制提供理论依据,进而控制水体富营养化。  相似文献   

14.
A multi-attribute analysis by means of the general multi-attribute analysis (GMAA) decision support system was performed in order to rank different strategies for good water quality with respect to trophic state, and good conditions for waterfowl, in the lagoon Ringkøbing Fjord, Denmark. The remedial strategies included nutrient abatement and the construction of facilities to increase the water exchange between the lagoon and the sea. The analysis showed that it is essential to keep the mean annual salinity level constant, since a drastic change in salinity may cause massive destruction of the macrophyte belt with large effects on the water quality and waterfowl abundance. It may be cost-effective to build and maintain a saltwater pumping station or a second sluice to increase the seawater inflow. Further nutrient abatement may not be cost-effective, at least not on time-scales shorter than 20 years, but the utility from nutrient abatement increases if a second sluice is built additionally. However, all of the remedial strategies, except decreasing the salinity, were projected to cause rather small changes in the effect variables compared to the no action alternative.  相似文献   

15.
Although many studies have pointed out the various controlling factors of sediment and nutrient delivery on a plot or watershed scale, little is known on the spatial variability of sediment and nutrient delivery on a regional scale. This study was conducted to reveal regional variations in sediment-associated nutrient delivery in central Belgium. Sediment deposited in 13 small retention ponds was sampled and analyzed for total phosphorus (TP), K, Mg, and Ca content. The TP content of the sediment deposits varied from 510 to 2001 mg P per kg sediment. Nutrients are predominantly fixed on the very fine sediment fraction (<16 microm), which is the reason why the nutrient trap efficiency of the ponds is only a fraction of the sediment trap efficiency. Average nutrient trap efficiency of the studied ponds varies between 4 and 31%, whereas sediment trap efficiency varies between 10 and 72%. For watersheds ranging from 7 to 4873 ha, sediment yield ranged between 1.2 and 20.6 Mg ha(-1) yr(-1), whereas TP export varied from 1.8 to 39.7 kg ha(-1) yr(-1). The observed spatial variability in nutrient losses is primarily attributed to regional variations in erosion and sediment yield values and to a far lesser degree to the spatial variations in fertilizer application. Redistribution of manure in the framework of an agricultural policy may increase the rate of nutrient delivery by ways of erosion and sediment transport.  相似文献   

16.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   

17.
沉水植物对富营养化水体的净化效果研究   总被引:4,自引:0,他引:4  
通过建立小型围隔区,研究了沉水植物对富营养化水体中氮、磷等污染物的净化效果,以及对底泥中磷含量的影响.结果表明:(1)在放养沉水植物的围隔水体中各种营养盐浓度明显低于对照围隔;(2)沉水植物对磷的吸收能够有效地保持底泥中磷的含量,而在对照围隔中的底泥中磷元素含量却不断增加;(3)经50天后,水体中TN、NH4 -N、TP、PO43--P和CODMn平均去除率分别为36.3%、70.5%、54.6%、65.4%和43.1%.  相似文献   

18.
Nutrient load allocations and subsequent reductions in total nitrogen and phosphorus have been applied in the Chesapeake watershed since 1992 to reduce hypoxia and to restore living resources. In 2010, sediment allocations were established to augment nutrient allocations supporting the submerged aquatic vegetation resource. From the initial introduction of nutrient allocations in 1992 to the present, the allocations have become more completely applied to all areas and loads in the watershed and have also become more rigorously assessed and tracked. The latest 2010 application of nutrient and sediment allocations were made as part of the Chesapeake Bay total maximum daily load and covered all six states of the Chesapeake watershed. A quantitative allocation process was developed that applied principles of equity and efficiency in the watershed, while achieving all tidal water quality standards through an assessment of equitable levels of effort in reducing nutrients and sediments. The level of effort was determined through application of two key watershed scenarios: one where no action was taken in nutrient control and one where maximum nutrient control efforts were applied. Once the level of effort was determined for different jurisdictions, the overall load reduction was set watershed‐wide to achieve dissolved oxygen water quality standards. Further adjustments were made to the allocation to achieve the James River chlorophyll‐a standard.  相似文献   

19.
ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost‐shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost‐share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient‐typical of a well managed agricultural field and low sediment/high nutrient‐typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated.  相似文献   

20.
Incorporation of manure into cultivated soils is generally recommended to minimize nutrient losses. A 3-yr study was conducted to evaluate sediment and nutrient losses with different tillage methods (moldboard plow, heavy-duty cultivator, double disk, and no-incorporation) for incorporation of beef cattle manure in a silage barley (Hordeum vulgare L.) cropping system. Runoff depths, sediment losses, and surface and subsurface nutrient transfers were determined from manured and unmanured field plots at Lethbridge, Alberta, Canada. A Guelph rainfall simulator was used to generate 30 min of runoff. Sediment losses among our tillage treatments (137.4-203.6 kg ha(-1)) were not significantly different due to compensating differences in runoff depths. Mass losses of total phosphorus (TP) and total nitrogen (TN) in surface runoff were greatest from the no-incorporation (NI) treatments, with reductions in TP loads of 14% for double disk (DD), 43% for cultivator (CU), and 79% for moldboard plow (MP) treatments. Total N load reductions in 2002 were 26% for DD, 70% for CU, and 95% for MP treatments compared to the NI treatments. Nutrient losses following incorporation of manure with the DD or CU methods were not significantly different from the NI treatments. Manure treatments generally had lower runoff depths and sediment losses, and higher phosphorus and nitrogen losses than the control treatments. Subsurface concentrations of NH4-N, NO3-N, and TN were greatest from the MP treatments, whereas subsurface phosphorus concentrations were not affected by tillage method. Tillage with a cultivator or double disk minimized combined surface and subsurface nutrient losses immediately after annual manure applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号