首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

2.
3.
ABSTRACT: Runoff and sediment production was measured under simulated and natural rain from 1×5 m plots established on a cutover and burned mixed pine-hardwood site in the Georgia Piedmont. Trees on the study site were cut and removed without mechanical disturbance. Slash was removed, kiln dried and replaced on the slope, and burned prior to plot installation. Three slopes, two rainfall intensities, three rainfall simulations representing three soil moisture conditions, and two replicate plots were used. The experiment was repeated four times during the period July 1989-July 1990 to investigate the effects of temporal changes in surface conditions and particularly root mat and residual forest floor decemposition. Runoff and sediment production from natural rainfall events was also measured from these plots during the period February-October 1990. Results of all measurements indicate that runoff and sediment production were generally low because of the protection afforded by the residual forest floor following burning. However, temporary hydrophobic conditions caused by a dry organic layer produced relatively high runoff rates and high sediment for the first few minutes of runoff for some of the simulated rainfall applications.  相似文献   

4.
ABSTRACT: One-dimensional and two-dimensional modeling approaches were compared for their abilities in predicting overland runoff and sediment transport. Both 1-D and 2-D models were developed to test the hypothesis that the 2-D modeling approach could improve the model predictions over the 1-P approach, based on the same mathematical representations of physical processes for runoff and sediment transport. The models developed in this study were applied to overland areas with cross slopes. A hypothetical case and an experimental study reported by Storm (1991) were used. Based on the simulation results from the selected hypothetical case and experimental study, the 2-D model provided better representation of spatial distribution of flow depths and sediment concentrations than the 1-D model. However, no significant differences in predictions of total runoff volume and sediment yield at the outlet area were found between the 1-D and 2-D models.  相似文献   

5.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

6.
Phosphorus (P) loss in overland flow varies with spatial distribution of soil P, management, and hydrological pathways. The effect of flow time, flowpath length, and manure position on P loss in overland flow from two central Pennsylvania soils packed in boxes of varying length (0.5, 1.0, 1.5, 2.75, and 4.0 m long x 15 cm wide x 5 cm deep) were examined by collecting flow samples at 5-min intervals for 30 min (50 mm h(-1) rainfall) without and with 75 kg P ha(-1) applied as swine (Sus scrofa) manure over 0.5 m of the box slope length at distances of 0 to 3.5 m from the downslope collection point. Dissolved reactive P concentration was more closely related to the proportion of clay in sediment of overland flow before (r = 0.98) than after (r = 0.56) manure application. This was attributed to the transport of larger, low-density particles after applying manure. The concentration of dissolved and particulate P fractions decreased with increasing flowpath length, due to dilution rather than sorption of P by surface soil during overland flow. Total P loss (mainly as particulate P) from the Watson channery silt loam (fine-loamy, mixed, active, mesic Typic Fragiudult) was more than from Berks channery silt loam (loamy-skeletal, mixed, active, mesic Typic Dystrudept), even with manure applied. Thus, while P loss in overland flow is affected by where manure is applied relative to flowpath length, initial soil P concentration should not be discounted when looking at areas of potential P loss within a watershed.  相似文献   

7.
ABSTRACT: An envelope of steady-state surface runoff response for a hilislope is established in terms of the probability distribution and spatial arrangement of individual point infiltration capacities and the rainfall intensity. Minimum overland flow is shown to occur when point infiltration capacities are ordered with the highest at the slope bottom, while maximum overland flow occurs when the highest point capacities are at the top of the slope. Equations for envelope curves are developed for both continuous distributions and discretely sampled data; examples for each case are given. Use of the analysis as a rainfall-runoff model is also discussed.  相似文献   

8.
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.  相似文献   

9.
The increasing use of concentrate feedstuffs within Northern Ireland dairy systems has resulted in significant farm gate phosphorus (P) surpluses, and these have contributed to increased soil P levels and risk of P loss to overland flow. However, the P content of feed concentrates can be lowered without compromising animal performance. This study focuses on P losses from grassland and evaluates how adjusting the P content of manure impacts on the P composition and concentration in overland flow. Dairy cows were offered diets containing 5.3 to 3.0 g P kg(-1) dry matter (DM) and produced manures with a range of P contents. Manure was applied at a rate of 50 m3 ha(-1) to 0.5-m2 grassland plots, and simulated rainfall (40 mm h(-1)) was applied repeatedly 2, 9, 28, and 49 d after during the summer, winter, and spring. Decreasing the P content in the diet, from the highest to the lowest P treatment (43%), produced a proportionately greater reduction in manure TP content (63%), but reductions were not exclusively in the water-soluble fraction. Following surface applications of manure, P concentrations in overland flow increased in all seasons (P < or = 0.001), while the greatest impact of varying the manure P content was most evident during the first simulated overland flow event. When diet P content was reduced from 5.4 to 3.0 g P kg(-1) DM, a statistically significant reduction in runoff P concentration was observed in all seasons. Elevated P concentrations in overland flow were observed for 28 d in spring and 9 d in summer and winter. The large drop in P concentrations between simulated rainfall events on Day 2 and Day 9 suggests that increasing the time interval between manure application and the generation of overland flow has a greater impact on P losses than does varying the dietary P content.  相似文献   

10.
ABSTRACT: A distributed watershed model was developed to mathematically simulate overland and channel flow for a single-event storm. The modeled watersheds in the study were subdivided into rectangular grid elements. All hydrologically significant parameters, such as land slope, rainfall and precipitation excess, were assumed to be uniform within each element. The Green-Ampt method was adopted to generate precipitation excess for each element during the simulation period. A two-dimensional diffusion wave model was used for overland flow routing and an iterative Alternative Direction Implicit scheme was used to solve the simultaneous overland flow equations. Once the overland flow became inflow to the channel, a one-dimensional dynamic wave flood routing technique, based on a four-point, implicit, non-linear finite difference solution of the St. Venant equation of unsteady flow, was applied. A limited number of comparisons were made between simulated and observed hydrographs for areas of about one square mile. Given the appropriate parameters, the model was able to accurately simulate runoff for single-event storms. This paper describes a distributed watershed model developed to simulate overland and channel flow. Comparisons were made between simulated and observed hydrographs for three watersheds. The model was able to accurately simulate the runoff for single-event storms using 61-m by 61-m (200 ft by 200 ft) watershed grid elements.  相似文献   

11.
ABSTRACT: A dynamic sediment discharge model was developed and proposed for the simulation of watershed systems. It war developed from an expansion of splash and flow erosion relationships under steady state conditions. It was described as a general erosion model that can be reduced to forms comparable to many conceptual soil erosion and sediment yield models. The model incorporates eight parameters such as rainfall intensities, runoff rates, and previous sediment discharges. The model was tested with two small watersheds with simulation results which were very satisfactory compared to the data.  相似文献   

12.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

13.
Understanding microbial pathogen transport patterns in overland flow is important for developing best management practices for limiting microbial transport to water resources. Knowledge about the effectiveness of vegetative filter strips (VFS) to reduce pathogen transport from livestock confinement areas is limited. In this study, overland and near-surface transport of Cryptosporidium parvum has been investigated. Effects of land slopes, vegetation, and rainfall intensities on oocyst transport were examined using a tilting soil chamber with two compartments, one with bare ground and the other with brome (Bromus inermis Leyss.) vegetation. Three slope conditions (1.5, 3.0, and 4.5%) were used in conjunction with two rainfall intensities (25.4 and 63.5 mm/h) for 44 min using a rainfall simulator. The vegetative surface was very effective in reducing C. parvum in surface runoff. For the 25.4 mm/h rainfall, the total percent recovery of oocysts in overland flow from the VFS varied from 0.6 to 1.7%, while those from the bare ground condition varied from 4.4 to 14.5%. For the 63.5 mm/h rainfall, the recovery percentages of oocysts varied from 0.8 to 27.2% from the VFS, and 5.3 to 59% from bare-ground conditions. For all slopes and rainfall intensities, the total (combining both surface and near-surface) recovery of C. parvum oocysts was considerably less from the vegetated surface than those from the bare-ground conditions. These results indicate that the VFS can be a best management practice for controlling C. parvum in runoff from animal production facilities.  相似文献   

14.
ABSTRACT: The effectiveness of streamside management zones (SMZs) was assessed for reducing sediment transport from concentrated overland flow draining two Georgia Piedmont clearcuts that had undergone mechanical and chemical site preparation and planting. Silt fences were used to trap sediment transport from zero‐order ephemeral swales at the edge of and within SMZs. Four control swales and nine treatment swales were studied. A double mass curve approach was used to graphically compare sediment accumulation rates at the edge of SMZs to accumulation rates within the SMZs at a distance consistent with current recommendations for SMZ width in Georgia. SMZ efficiencies for trapping sediment transported by concentrated flow ranged from 71 to 99 percent. No statistical model was found to explain how SMZ efficiencies varied with SMZ and contributing area characteristics. Measured sediment accumulations at the SMZ boundary were compared to Revised Universal Soil Loss Equation (RUSLE) predictions of up‐ slope erosion, and a delivery ratio of 0.25 was calculated. SMZs had a quantifiable and substantial ameliorating effect on sediment transport from concentrated overland flow on the clearcut study sites.  相似文献   

15.
In nondegraded watersheds of humid climates, subsurface flow patterns determine where the soil saturates and where surface runoff is occurring. Most models necessarily use infiltration‐excess (i.e., Hortonian) runoff for predicting runoff and associated constituents because subsurface flow algorithms are not included in the model. In this article, we modify the Water Erosion Prediction Project (WEPP) model to simulate subsurface flow correctly and to predict the spatial and temporal location of saturation, the associated lateral flow and surface runoff, and the location where the water can re‐infiltrate. The modified model, called WEPP‐UI, correctly simulated the hillslope drainage data from the Coweeta Hydrologic Laboratory hillslope plot. We applied WEPP‐UI to convex, concave, and S‐shaped hillslope profiles, and found that multiple overland flow elements are needed to simulate distributed lateral flow and runoff well. Concave slopes had the greatest runoff, while convex slopes had the least. Our findings concur with observations in watersheds with saturation‐excess overland flow that most surface runoff is generated on lower concave slopes, whereas on convex slopes runoff infiltrates before reaching the stream. Since the WEPP model is capable of simulating both saturation‐excess and infiltration‐excess runoff, we expect that this model will be a powerful tool in the future for managing water quality.  相似文献   

16.
The Road Erosion and Delivery Index (READI) is a new geographic information system–based model to assess erosion and delivery of water and sediment from unpaved road networks to streams. READI quantifies the effectiveness of existing road surfacing and drain placements in reducing road sediment delivery and guides upgrades to optimize future reductions. Roads are draped on a digital elevation model and parsed into hydrologically distinct segments. Segments are further divided by engineered drainage structures. For each segment, a kinematic wave approximation generates runoff hydrographs for specified storms, with discharge directly to streams at road–stream crossings and onto overland‐flow plumes at other discharge points. Plumes are attenuated by soil infiltration, which limits their length, with delivery occurring if plumes intersect streams. Sediment production and sediment delivery can be calculated as a relative dimensionless index. READI predicts only a small proportion of new drains and new surfacing results in the majority of sediment delivery reductions. The model illustrates how the spatial relationships between road and stream networks, controlled by topography and network geometries, influence patterns of road–stream connectivity. READI was applied in seven northern California basins. The model was also applied in a recent burn area to examine how reduced hillslope infiltration can result in increased hydrologic connectivity and sediment delivery.  相似文献   

17.
Soil loss and surface runoff patterns were studied in erosion plots developed on manmade steep slopes (60 percent) over three years (1997–2000) in which rainfall ranged from 1338.4 to 1429.2 mm/year. Surface runoff and soil loss was examined under three different rainfall intensity classes. Runoff was mainly controlled by the rainfall distribution pattern on the seasonal scale. The soil loss was influenced by runoff during the first year. Both soil loss and runoff were reduced due to bioengineering measures in the first year irrespective of species planted. In the third year, combined effects of growth of grasses on protected plots, soil compaction and sediment exhaustion was noticed on runoff and soil loss. This was reflected by reduction in the runoff and soil loss from untreated and treated plots. In the high intensity class, reduction in runoff in treated plots was about 50 percent in three years and reduction in soil loss ranged between 94–95 percent in all plots. Physical treatment with brushwood structures was more efficient in erosion control in the low intensity class.  相似文献   

18.
Effects of precipitation, runoff, and management on total phosphorus (TP) loss from three adjacent, row-cropped watersheds in the claypan region of northeastern Missouri were examined from 1991 to 1997 to understand factors affecting P loss in watersheds dominated by claypan soils. Runoff samples from each individual runoff event were analyzed for TP and sediment concentration. The annual TP loss ranged from 0.29 to 3.59 kg ha(-1) with a mean of 1.36 kg ha(-1) across all the watersheds during the study period. Significantly higher loss of TP from the watersheds was observed during the fallow period. Multiple small runoff events or several large runoff events contributed to loss of TP from the watersheds. Total P loss in 1993, a year with above-normal precipitation, accounted for 30% of the total TP loss observed over seven years. The five largest runoff events out of a total of 66 events observed over seven years accounted for 27% of the TP loss. The five largest sediment losses were responsible for 24% of the TP loss over seven years. Runoff volume and sediment loss explained 64 to 73% and 47 to 58% of the variation in TP loss on watersheds during the study. Flow duration and maximum flow accounted for 49 and 66% of TP loss, respectively. The results of this study suggest that management practices that reduce runoff volume, flow duration, maximum flow, and sediment loss, and that maintain a suitable vegetative cover throughout the year could lower P loss in claypan soils.  相似文献   

19.
ABSTRACT: A soil erosion simulation model that considered the physical conditions of agricultural watersheds and that interfaced with the modified USDAHL-74 watershed hydrology model was developed. The erosion model simulates the detachment and transport of soil particles caused by raindrop impact and overland flow from rill and interrill areas. The model considers temporal and spatial variation of plant residue, crop canopy cover, snow cover, and the moisture content of surface soil as modifying factors of the erosive forces of raindrop impact and overland flow. The hydrology model simulates overland flow and some of the physical parameters that are used in the erosion model. The simulation is executed in the time interval determined by the rainfall rate or snowmelt rate. The erosion model compares the transport capacity of the overland flow and the sediment loaded in the overland flow to determine the fate account for the free soil particles that have already been detached and are readily available to be transported by the overland flow. The model was tested with data from two small agricultural watersheds in the Palouse region of the Pacific Northwest dryland. The model was calibrated by trial-and-error to determine the coefficients of the model.  相似文献   

20.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号