首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The solution chemistry of forested streams primarily in western North America is explained by considering the major factors that influence this chemistry — geological weathering; atmospheric precipitation and climate; precipitation acidity; terrestrial biological processes; physical/chemical reactions in the soil; and physical, chemical, and biological processes within streams. Due to the complexity of all these processes and their varying importance for different chemicals, stream water chemistry has exhibited considerable geographic and temporal variation and is difficult to model accurately. The impacts of forest harvesting on stream water chemistry were reviewed by considering the effects of harvesting on each of the important factors controlling this chemistry, as well as other factors influencing these impacts ‐ extent of the watershed harvested, presence of buffer strips between streams and harvested areas, nature of post‐harvesting site preparation, revegetation rate following harvesting, pre‐harvesting soil fertility, and soil buffering capacity. These effects have sometimes reinforced one another but have sometimes been counterbalancing or slight so that harvesting impacts on stream water chemistry have been highly variable. Eight major knowledge gaps were identified, two of which — a scarcity of detailed stream chemical budgets and knowledge of longitudinal variation in stream chemistry — relate to undisturbed streams, while the remainder relate to forest harvesting effects.  相似文献   

2.
Elevated levels of P in urban streams can pose significant water quality problems. Sources of P in urban streams, however, are difficult to identify. It is important to recognize both natural and anthropogenic sources of P. We investigated near-stream chemistry and land use factors on stream water P in the urbanizing Johnson Creek watershed in Portland, OR, USA. We sampled stream water and shallow groundwater soluble reactive P (SRP) and total P (TP) and estimated P flux at 13 sites along the main stem of Johnson Creek, with eight sites in urban land use areas and five sites in nonurban land use areas. At each site, we sampled the A and B horizons, measuring soil pH, water-soluble P, acid-soluble P, base-soluble P, total P, Fe, and Al. We found continuous input of P to the stream water via shallow groundwater throughout the Johnson Creek watershed. The shallow groundwater P concentrations were correlated with stream water P within the nonurban area; however, this correlation was not found in the urban area, suggesting that other factors in the urban area masked the relationship between groundwater P and stream water P. Aluminum and Fe concentrations were inversely correlated with shallow groundwater P, suggesting that greater P adsorption to Al and Fe oxides in the nonurban area reduced availability of shallow groundwater P. Using stepwise multiple regression analysis, however, we concluded that while riparian soil chemistry was related to stream water P, land use patterns had a more significant relationship with stream water P concentrations in this urbanizing system.  相似文献   

3.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

4.
A wastewater model was applied to the Potomac River watershed to provide (i) a means to identify streams with a high likelihood of carrying elevated effluent-derived contaminants and (ii) risk assessments to aquatic life and drinking water. The model linked effluent discharges along stream networks, accumulated wastewater, and predicted contaminant loads of municipal wastewater constituents while accounting for instream dilution and attenuation. Simulations using 2016 data suggested that nearly 30% (8281 km) of streams were wastewater impacted. Low- to medium-order streams had the largest range of accumulated wastewater (ACCWW%) values. ACCWW% exceeded a 1% threshold at >39% of drinking-water intakes (varied by temporal condition). Risk assessments of municipal wastewater-contaminant mixtures indicated that 22% (1479 km) of streams impacted by municipal wastewater (5.5% of all reaches modeled) may pose high risk to aquatic organisms under mean-annual conditions, with fish more susceptible to chronic-exposure effects relative to other taxa. Risk varied temporally and by stream order, with the greatest risk occurring in the summer in small streams. These findings suggest that wastewater may be an important factor contributing to environmental degradation in the Potomac River watershed.  相似文献   

5.
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air–water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream’s thermal sensitivity. Both the regional and the stream-specific air–water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream’s thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.  相似文献   

6.
A study of the impact of two flood control reservoirs and pollution influx was conducted on two streams within the Sandy Creek Watershed, Mercer County, Pennsylvania, USA. Fecal coliforms were significantly reduced in the outflows without affecting water chemistry, thereby improving the overall water quality. The size and composition of the aquatic communities as well as stream metabolism varied seasonably among the different sampling stations. Pollution influx primarily from communities and agricultural drainage had a greater impact on the stream ecosystem than did impounding of the streams. Natural wetlands and riparian vegetation were important factors in reducing the pollution load in these streams. The reestablishment and maintenance of riparian vegetation should therefore be an integral part of the land-use plan for watersheds in order to improve water quality and wildlife habitats. In the future, the maintenance of riparian vegetation should be given prime consideration in the development of watershed projects.  相似文献   

7.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

8.
ABSTRACT: Aquatic monitoring aims to assess the condition of aquatic habitats and biota. To make statements about condition, the range of human activities and the risks they pose to aquatic ecosystems must be identified. Assessing relative risk and placing sample sites on a human disturbance gradient is necessary for interpreting biological response and distinguishing human disturbance from natural controls in aquatic systems. We describe a process that uses readily available sources, such as topographic maps, aerial photographs, and field information, to identify and prioritize stream reach and watershed stressors for 102 streams in the mid-Appalachian region of the United States. All perceptible human alterations to riparian and upland areas along with their number, type, intensity, and extent of impact were recorded and ranked; a relative risk index was developed to assign scores to the watersheds. The resulting risk index scores were consistent with measures of stream condition based on water chemistry and benthic macroinvertebrates. The risk index gives a cost-effective, regional picture of the relative risk of impairment to aquatic ecosystems in the mid-Appalachian region of the USA and could be modified for other regions or ecosystem types.  相似文献   

9.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

10.
Clearcutting may alter stream biota by changing light, temperature, nutrients, sediment particle size, or food in the stream. We sampled macroinvertebrates during late summer of 1979 in first and second order headwater streams draining both two- and three-year-old clearcuts and nearby uncut reference areas in northern New England, USA. Periphyton were sampled throughout the summer by placing microscope slides in these streams for 13–37 days. Periphyton cell densities on these slides following incubation were about six times higher in cutover than in reference streams. Green algae (Chlorophyceae) accounted for a higher proportion of total cell numbers in cutover than in reference streams, whereas diatoms (Bacillariophyceae) dominated the reference streams. The macroinvertebrate density in cutover streams was 2–4 times greater than that in the reference streams, but the number of taxa collected was similar in both cutover and reference streams. Higher numbers of mayflies (Ephemeroptera) and/or true flies (Diptera) in the cutover streams accounted for the differences. Because nutrient concentrations in the cutover streams were nearly the same as those in the reference streams, these differences in macroinvertebrate and periphyton densities were apparently caused by higher light levels and temperature in the streams in the clearcuts. Leaving buffer strips along streams will reduce changes in stream biology associated with clearcutting.Contribution from the Northeastern Forest Experiment Station, USDA Forest Service, Durham, New Hampshire 03824, USA.  相似文献   

11.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

12.
Acid-neutralizing capacity (ANC) and pH were measured weekly from October 1991 through September 2001 in three streams in the western Adirondack Mountain region of New York to identify trends in stream chemistry that might be related to changes in acidic deposition. A decreasing trend in atmospheric deposition of SO4/2- was observed within the region over the 10-yr period, although most of the decrease occurred between 1991 and 1995. Both ANC and pH were inversely related to flow in all streams; therefore, a trend analysis was conducted on (i) the measured values of ANC and pH and (ii) the residuals of the concentration-discharge relations. In Buck Creek, ANC increased significantly (p < 0.05) over the 10 yr, but the residuals of ANC showed no trend (p > 0.10). In Bald Mountain Brook, ANC and residuals of ANC increased significantly (p < 0.01), although the trend was diatonic-a distinct decrease from 1991 to 1996 was followed by a distinct increase from 1996 to 2001. In Fly Pond outlet, ANC and residuals of ANC increased over the study period (p < 0.01), although the trend of the residuals resulted largely from an abrupt increase in 1997. In general, the trends observed in the three streams are similar to results presented for Adirondack lakes in a previous study, and are consistent with the declining trend in atmospheric deposition for this region, although the observed trends in ANC and pH in streams could not be directly attributed to the trends in acidic deposition.  相似文献   

13.
Abstract: Cool summertime stream temperature is an important component of high quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network; yet, little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest spatial and temporal patterns in summer stream temperature for small streams of the Oregon Coast Range in forests managed for timber production. We also explore relationships between stream and riparian attributes and observed stream temperature conditions and patterns. Summer stream temperature, channel, and riparian data were collected on 36 headwater streams in 2002, 2003, and 2004. Mean stream temperatures were consistent among summers and generally warmed in a downstream direction. However, longitudinal trends in maximum temperatures were more variable. At the reach scale of 0.5‐1.7 km, maximum temperatures increased in 17 streams, decreased in seven streams and did not change in three reaches. At the subreach scale (0.1‐1.5 km), maximum temperatures increased in 28 subreaches, decreased in 14, and did not change in 12 subreaches. Models of increasing temperature in a downstream direction may oversimplify fine‐scale patterns in small streams. Stream and riparian attributes that correlated with observed temperature patterns included cover, channel substrate, channel gradient, instream wood jam volume, riparian stand density, and geology type. Longitudinal patterns of stream temperature are an important consideration for background characterization of water quality. Studies attempting to evaluate stream temperature response to timber harvest or other modifications should quantify variability in longitudinal patterns of stream temperature prior to logging.  相似文献   

14.
ABSTRACT: The biogeochemistry of a coastal old-growth forested watershed in Olympic National Park, Washington, was examined. Objectives were to determine: (1) concentrations of major cations and anions and dissolved organic C (DOC) in precipitation, throughfall, stemflow, soil solution and the stream; (2) nutrient input/output budgets; and (3) nutrient retention mechanisms in the watershed. Stemilow was more acidic (pH 4.0–4.5) than throughfall (pH 5.1) and precipitation (pH 5.3). Organic acids were important contributors to acidity in throughfall and stemflow and tree species influenced pH. Soil solution pH averaged 6.2 at 40 cm depth. Stream pH was higher (7.6). Sodium (54.0 μeq L-1) and Cl (57.6 μeq L?1) were the dominant ions in precipitation, reflecting the close proximity to the ocean. Throughfall and stemflow were generally enriched in cations, especially K. Cation concentrations in soil solutions were generally less than those in stemilow. Ion concentrations increased in the stream. Dominant ions were Ca (759.7 μeq L?1), Na (174.4 μeq L?1), HCO3 (592.0 μeq L?1), and SO4 (331.5 μeq L?1) with seasonal peaks in the fall. Bedrock weathering strongly influenced stream chemistry. Highest average NO3 concentrations were in the stream (5.2 μeq L?1) with seasonal peaks in the fall and lowest concentrations in the growing season. Nitrogen losses were similar to inputs; annual inputs were 4.8 kg/ha (not including fixation) and stream losses were 7.1 kg/ha. Despite the age and successional status of the forest, plant uptake is an important N retention mechanism in this watershed.  相似文献   

15.
ABSTRACT: The impact of various urban land uses on water flow and quality in streams is being studied by monitoring small streams in the Milwaukee urban area. This paper compares the responses of an urban watershed and an agricultural watershed to an autumn rainfall of 2.2 cm. Flow from the urban basin showed a substantially greater response to the rain than that from the rural. Dilution, resulting from the greater quantities of surface runoff in the urban watershed, caused lower concentrations of sodium, chloride, calcium, magnesium, bicarbonate and total dissolved solids in the urban stream. The total quantity of these materials removed per unit drainage area of the urban basin was much greater, however. Road salt was still among the dominant dissolved materials in the urban water chemistry seven months after the last road salting. Sodium was apparently being released from adsorption by clays in the urban basin. Suspended sediment concentrations and total loads were higher in the urban stream.  相似文献   

16.
ABSTRACT: The decline of many fish populations within the mid-Appalachian region has been attributed to stream acidification as a result of acid precipitation. Many previous attempts to examine relationships between fish occurrence and acidification have been hindered by a lack of data on water quality and fish distributions. To assess relationships between water quality and bedrock type in the upper Cheat River drainage, we used EPA STORET water quality data (1969–1993) and calculated mean pH and mean alkalinity of streams associated with four bedrock types (Hampshire, Chemung, Mauch Chunk, and Pottsville). We examined the relationship between fish occurrence and bedrock type for 53 headwater streams. We found that acidity in headwater streams associated with Pottsville and Mauch Chunk groups often exceeded biological thresholds for acid-sensitive fish species (pH < 5.5). Streams associated with the Pottsville group typically had fewer cyprinid species and fewer total species than those associated with Mauch Chunk, Chemung, and Hampshire bedrock types. The congruent occurrence of streams with low buffering capacity, streams with pH > 5.5, and streams with low fish species richness indicate that acidification has influenced fish distributions in the upper Cheat River drainage.  相似文献   

17.
ABSTRACT: Programs of monthly or annual stream water sampling will rarely observe the episodic extremes of acidification chemistry that occur during brief, unpredictable runoff events. When viewed in the context of data from several streams, however, baseflow measurements of variables such as acid neutralizing capacity, pH and NO3· are likely to be highly correlated with the episodic extremes of those variables from the same stream and runoff season. We illustrate these correlations for a water chemistry record, nearly two years in length, obtained from intensive sampling of 13 small Northeastern U.S. streams studied during USEPA's Episodic Response Project. For these streams, simple regression models estimate episodic extremes of acid neutralizing capacity, pH, NO3·, Ca2+, SO42?, and total dissolved Al with good relative accuracy from statistics of monthly or annual index samples. Model performances remain generally stable when episodic extremes in the second year of sampling are predicted from first-year models. Monthly or annual sampling designs, in conjunction with simple empirical models calibrated and maintained through intensive sampling every few years, may estimate episodic extremes of acidification chemistry with economy and reasonable accuracy. Such designs would facilitate sampling a large number of streams, thereby yielding estimates of the prevalence of episodic acidification at regional scales.  相似文献   

18.
The water quality of some tropical fresh-water bodies in Uyo (Nigeria) was investigated for two years in relation to point and non-point source city effluents and slaughter-house washings discharged into them. Streams which received city effluents and slaughter-house washings were degraded in quality with acidic water (pH =5.26±0.83 to 6.20±0.56), low oxygenation (2.46±1.30 to 3.88±0.29 mgl–1), high biochemical oxygen demand (4.96±0.66 to 8.20±0.82 mgl–1) and chemical oxygen demand (88.60±3.50 to 146.36±9.86 mgl–1) than non-effluent receiving streams. High acidity in streams is due mainly to the acidic nature of underground water which replenishes the streams. Nutrient levels were high indicating enrichment from highly fertilized farmlands and slaughter-house washings. The concentrations of most of the hydrochemical variables were significantly lower in non-effluent than effluent-receiving streams. Some of the hydrochemical variables (total alkalinity, dissolved oxygen, nitrate, phosphate and conductivity) exhibited pronounced seasonality regimes with significant correlations with rainfall indicating its influence on the chemical hydrology of the water bodies. Land use in the catchment influenced water quality through inflow of nutrients, organic and inorganic contaminants and siltation. Pollution in the impacted streams is attributed mainly to episodic events.  相似文献   

19.
During a 1-year period, we sampled stream water total phosphorus (TP) concentrations daily and soluble reactive phosphorus (SRP) concentrations weekly in four Seattle area streams spanning a gradient of forested to urban-dominated land cover. The objective of this study was to develop time series models describing stream water phosphorus concentration dependence on seasonal variation in stream base flows, short-term flow fluctuations, antecedent flow conditions, and rainfall. Stream water SRP concentrations varied on average by ±18% or ±5.7 μg/L from one week to another, whereas TP varied ±48% or ±32.5 μg/L from one week to another. On average, SRP constituted about 47% of TP. Stream water SRP concentrations followed a simple sine-wave annual cycle with high concentrations during the low-flow summer period and low concentrations during the high-flow winter period in three of the four study sites. These trends are probably due to seasonal variation in the relative contributions of groundwater and subsurface flows to stream flow. In forested Issaquah Creek, SRP concentrations were relatively constant throughout the year except during the fall, when a major salmon spawning run occurred in the stream and SRP concentrations increased markedly. Stream water SRP concentrations were statistically unrelated to short-term flow fluctuations, antecedent flow conditions, or rainfall in each of the study streams. Stream water TP concentrations are highly variable and strongly influenced by short-term flow fluctuations. Each of the processes assessed had statistically significant correlations with TP concentrations, with seasonal base flow being the strongest, followed by antecedent flow conditions, short-term flow fluctuations, and rainfall. Times series models for each individual stream were able to predict ∼70% of the variability in the SRP annual cycle in three of the four streams (r2 = 0.57–0.81), whereas individual TP models explained ∼50% of the annual cycle in all streams (r2 = 0.39–0.59). Overall, time series models for SRP and TP dynamics explained 82% and 76% of the variability for these variables, respectively. Our results indicate that SRP, the most biologically available and therefore most important phosphorus fraction, has simpler and easier-to-predict seasonal and weekly dynamics.  相似文献   

20.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号