首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure—including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition—on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.  相似文献   

2.
外来植物入侵对土壤生物多样性的影响已成为生态学领域的研究热点之一。运用Biolog技术和氯仿熏蒸浸提法研究了黄顶菊入侵对土壤微生物群落功能多样性及土壤微生物量的影响。结果表明,黄顶菊入侵后土壤微生物代谢活性显著升高;土壤微生物群落平均吸光值(4WCD)的变化趋势为:入侵地根际土(RPs)〉入侵地根围土(Bs)〉未入侵地(CK),且差异显著;而CK的功能多样性指数(日)高于BS,RPS亦高于Bs,差异均显著(P〈O.05)。主成分分析结果表明,黄顶菊入侵使土壤微生物群落的碳源利用方式和代谢功能发生改变。对不同碳源利用的分析结果表明,糖类、氨基酸类、羧酸类和聚合物为土壤微生物利用的主要碳源。入侵样地Bs和RPS的微生物量碳分别比CK高27.05%、121.52%;BS和RPS的微生物量氮分别比CK高37.40%、79.80%。相关性分析表明,AWCD与微生物量碳和微生物量氮均呈极显著正相关(P〈0.01)。由此可知,黄顶菊入侵增强了入侵地土壤微生物代谢活性,降低了土壤微生物群落的功能多样性,增加了土壤微生物量碳、氮水平。  相似文献   

3.
Abstract

Sustainable ecosystems can be designed to eliminate environmental toxins and reduce pathogen loads through the direct and indirect consequences of plant and microbial activities. We present an approach to the bioremediation of disturbed environments, focusing on petroleum hydrocarbon (PHC) contaminants. Treatment consists of incorporating a plant-based amendment to enhance ecosystem productivity and physiochemical degradation followed by the establishment of plants to serve as oxidizers and foundations for microbial communities. Promising amendments for widespread use are entire plants of the water fern Azolla and seed meal of Brassica napus (rapeseed). An inexpensive byproduct from the manufacture of biodiesel and lubricants, rapeseed meal is high in nitrogen (6% wt/wt), stimulates >100-fold increases in populations of resident Streptomyces species, and suppresses fungal infection of roots subsequently cultivated in the amended soil. Synergistic enzymatic and chemical activities of plant and microbial metabolism in root zones transform and degrade soil contaminants. Emphasis is given to mechanisms that enable PHC functionalization via reactive molecular species.  相似文献   

4.
Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.  相似文献   

5.
The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse conditions with those from field trials. Plants were grown in contrasting sandy loam and clay loam soils, half were sprayed with a pyrethroid insecticide (deltamethrin) and soil samples taken at the five-leaf stage, flowering, and maturity. The main effect on all measured parameters was that of soil type and there were no effects of Bt trait or insecticide on plant growth. The Bt trait resulted in more soil nematodes and protozoa (amoebae), whereas insecticide application increased plant Bt concentration and altered nematode community structure. The only significant effects on soil microbial community structure, microarthropods, and larvae of a nontarget root-feeding Dipteran, were due to soil type and plant growth stage. The results indicate that, although there were statistically significant effects of the Bt trait on soil populations, they were small. The relative magnitude of the effect could best be judged by comparison with the insecticide treatment, which was representative of current best practice. The Bt trait had no greater effect than the insecticide treatment. Results from this glasshouse experiment were in broad agreement with conclusions from field experiments using the same plant material grown in the same soils.  相似文献   

6.
The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use.  相似文献   

7.
Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.  相似文献   

8.
One of the potential environmental effects of the recent rapid increase in the global agricultural area cultivated with transgenic crops is a change in soil microbially mediated processes and functions. Among the many essential functions of soil biota are soil organic matter decomposition, nutrient mineralization and immobilization, oxidation-reduction reactions, biological N fixation, and solubilization. However, relatively little research has examined the direct and indirect effects of transgenic crops and their management on microbially mediated nutrient transformations in soils. The objectives of this paper are to review the available literature related to the environmental effects of transgenic crops and their management on soil microbially mediated nutrient transformations, and to consider soil properties and climatic factors that may affect the impact of transgenic crops on these processes. Targeted genetic traits for improved plant nutrition include greater plant tolerance to low Fe availability in alkaline soils, enhanced acquisition of soil inorganic and organic P, and increased assimilation of soil N. Among the potential direct effects of transgenic crops and their management are changes in soil microbial activity due to differences in the amount and composition of root exudates, changes in microbial functions resulting from gene transfer from the transgenic crop, and alteration in microbial populations because of the effects of management practices for transgenic crops, such as pesticide applications, tillage, and application of inorganic and organic fertilizer sources. Possible indirect effects of transgenic crops, including changes in the fate of transgenic crop residues and alterations in land use and rates of soil erosion, deserve further study. Despite widespread public concern, no conclusive evidence has yet been presented that currently released transgenic crops, including both herbicide and pest resistant crops, are causing significant direct effects on stimulating or suppressing soil nutrient transformations in field environments. Further consideration of the effects of a wide range of soil properties, including the amount of clay and its mineralogy, pH, soil structure, and soil organic matter, and variations in climatic conditions, under which transgenic crops may be grown, is needed in evaluating the impact of transgenic crops on soil nutrient transformations. Future environmental evaluation of the impact of the diverse transgenic crops under development could lead to an improved understanding of soil biological functions and processes.  相似文献   

9.
Effects of Recreational Impacts on Soil Microbial Communities   总被引:51,自引:0,他引:51  
/ The functional diversity of soil microbial communities in heavilyimpacted subalpine campsites and adjacent undisturbed areas was comparedusing the Biolog method of carbon utilization profiles. Principal componentsanalysis of patterns and level of microbial activity indicate that microbialcommunities differentiate in response to disturbance in the top 6 cm of soil,while below 6 cm there were no recognizable differences between disturbed andundisturbed soil communities. Analysis of the factors that differentiate theupper microbial communities between disturbed and undisturbed sites revealedthat the percent of total carbon sources utilized was significantly less inthe disturbed (54%) than in undisturbed areas (95%). Carbonsubstrates important in the discrimination between soil communities includeplant, invertebrate, and microbial derivatives that could not be metabolizedby microbial communities from disturbed sites. Comparisons of totalculturable actinomycetes, bacteria, and fungi reveal no difference in overallnumber of colony forming units (CFU) on disturbed and undisturbed sites, buta marked decrease in actinomycetes on disturbed sites. Biolog andspread-plate data combined indicate a shift in the structure and function ofthe microbial community in campsite soils, which may be a useful indicator ofsoil community disturbance.KEY WORDS: Microbial functional diversity; Anthropogenic disturbance;Recreational impacts; Carbon source profile; Subalpine  相似文献   

10.
Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil.  相似文献   

11.
The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish near-trump (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity.  相似文献   

12.
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers. (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.  相似文献   

13.
Plant–soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3–5?years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3–5?years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.  相似文献   

14.
Heavy metal pollution of soil is of concern for human health and ecosystem function. The soil microbial community should be a sensitive indicator of metal contamination effects on bioavailability and biogeochemical processes. Simple methods are needed to determine the degree of in situ pollution and effectiveness of remediating metal-contaminated soils. Currently, phospholipid-linked fatty acids (PLFAs) are preferred for microbial profiling but this method is time consuming, whereas direct soil extraction and transesterification of total ester-linked fatty acids (ELFAs) is attractive because of its simplicity. The 1998 mining acid-metal spill of >4000 ha in the Guadiamar watershed (southwestern Spain) provided a unique opportunity to study these two microbial lipid profiling methods. Replicated treatments were set up as nonpolluted, heavy metal polluted and reclaimed, and polluted soils. Inferences from whole community-diversity analysis and correlations of individual fatty acids with metals suggested Cu, Cd, and Zn were the most important in affecting microbial community structure, along with pH. The microbial stress marker, monounsaturated fatty acids, was significantly lower for reclaimed and polluted soil over nonpolluted soils for both PLFA and ELFA extraction. Another stress marker, the monounsaturated to saturated fatty acids ratio, only showed this for the PLFA. The general fungal marker (18:2omega6c), the arbuscule mycorrhizae marker (16:1omega5c), and iso- and anteiso-branched PLFAs (gram positive bacteria) were suppressed with increasing pollution whereas 17:0cy (gram negative bacteria) increased with metal pollution. For both extraction methods, richness and diversity were greater in nonpolluted soils and lowest in polluted soils. The ELFA method was sensitive for reflecting metal pollution on microbial communities and could be suitable for routine use in ecological monitoring and risk assessment programs because of its simplicity and reproducibility.  相似文献   

15.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   

16.
Bioindicators are often more sensitive indicators of both biodiversity and environmental change than abiotic pollution parameters. The responses of selected plants and animals to anthropogenic insults can be used to assess environmental responses at a variety of spatial and temporal scales. This study maps the response of key reptile, mammal, bird and plant species to airborne contaminants around a large mine and mineral processing operation at Olympic Dam in arid Australia. The responses of different bioindicators should ideally be integrated in order to comprehend overall trends in biological integrity adjacent to pollution sources. Assimilation of different bioindicator responses allows greater precision and geographic coverage of the monitored region and reduces potential distortion from unrelated biological or monitoring responses of individual indicator groups. A single, integrated measure of ecosystem health that overlays the responses of otherwise incompatible datasets, is also of more value to industrial operators and environmental regulators than several disparate responses. Biohyets, which are the contours of bioindicator index values derived from multiple biotic measurements, are here used to map variability in ecosystem health and to identify regions, response variables and disturbance parameters for more rigorous analysis.  相似文献   

17.
/ Mechanized military maneuvers are an intensive form of disturbance to plant communities in large areas throughout the world. Tracking by heavy vehicles can cause direct mortality and indirectly affect plant communities through soil compaction and by altering competitive relationships. We assessed the long-term condition of structural attributes of open woodland, grassland, and shrubland communities at Fort Carson, Colorado, in relation to levels of disturbance and soil texture. Covariate analyses were used to help separate the directional forcings by the chronic disturbance from the regenerative capacities in order to assess the relative resistance and resilience of the communities and to determine whether the continual disturbance-recovery processes balanced under current levels of utilization. All three communities responded differently to disturbance. In open woodlands, altered understory/overstory relationships were suggested by increased grass, forb, shrub, and total vegetation cover and smaller decreases in shorter than taller woody species with increasing levels of disturbance. Grassland communities generally displayed greater responses to disturbance than other communities, but temporal dynamics were often similar, indicating relatively less resistance but greater resilience of this community. Weed and exotic species increased both temporally and in relation to levels of disturbance in all three community types. Temporal trends in community-level indices of dissimilarity and diversity also indicate that rates of disturbance were greater than rates of recovery. Few variables were related to within-community differences in soil texture. While total aerial cover was temporally stable, changes in species composition and in basal cover in grasslands and shrublands suggest increasing erosion potential.  相似文献   

18.
Little is known about the microbial communities carried in wind-eroded sediments from various soil types and land management systems. The novel technique of pyrosequencing promises to expand our understanding of the microbial diversity of soils and eroded sediments because it can sequence 10 to 100 times more DNA fragments than previous techniques, providing enhanced exploration into what microbes are being lost from soil due to wind erosion. Our study evaluated the bacterial diversity of two types of wind-eroded sediments collected from three different organic-rich soils in Michigan using a portable field wind tunnel. The wind-eroded sediments evaluated were a coarse sized fraction with 66% of particles >106 μm (coarse eroded sediment) and a finer eroded sediment with 72% of particles <106 μm. Our findings suggested that (i) bacteria carried in the coarser sediment and fine dust were effective fingerprints of the source soil, although their distribution may vary depending on the soil characteristics because certain bacteria may be more protected in soil surfaces than others; (ii) coarser wind-eroded sediment showed higher bacterial diversity than fine dust in two of the three soils evaluated; and (iii) certain bacteria were more predominant in fine dust (, , and ) than coarse sediment ( and ), revealing different locations and niches of bacteria in soil, which, depending on wind erosion processes, can have important implications on the soil sustainability and functioning. Infrared spectroscopy showed that wind erosion preferentially removes particular kinds of C from the soil that are lost via fine dust. Our study shows that eroded sediments remove the active labile organic soil particulates containing key microorganisms involved in soil biogeochemical processes, which can have a negative impact on the quality and functioning of the source soil.  相似文献   

19.
Results from a 1995 survey of utility company biologists indicate that aquatic biodiversity is an emerging and poorly understood issue. As a result, there is some confusion about what aquatic biodiversity actually is, and how we can best conserve it. Only one fourth (24%) of the respondents said their company has a stated environmental policy that addresses biodiversity. Many respondents indicate that over the years they have not specifically managed for biodiversity, but have been doing that through their efforts to assure balanced indigenous populations. While regulations are still the major driver for biological work, an increasing number of companies are involved in voluntary partnerships in managing water resources. Of these voluntary partnerships, 70% have biodiversity as a goal. Biodiversity is becoming an increasingly common subject of study, and a vast majority (75%) of the respondents suggested it should be a goal for utility resource management. Conservation of aquatic biodiversity is a complex task, and to date most aquatic efforts have been directed toward fish and macroinvertebrates. Ecological research and technological development performed by the utility industry have resulted in a number of successful biopreservation and biorestoration success stories. A common theme to preserving or enhancing aquatic biodiversity is preserving aquatic habitat. Increasingly, ecosystem management is touted as the most likely approach to achieve success in preserving aquatic biodiversity. Several utilities are conducting progressive work in implementing ecosystem management. This paper presents the potential interactions between power plants and biodiversity, an overview of aquatic biodiversity preservation efforts within the electric utility industry, more detail on the results of the survey, and recent initiatives in ecosystem management.  相似文献   

20.
Research on human dimensions of ecosystems through the ecosystem services (ES) concept has proliferated over recent decades but has largely focused on monetary value of ecosystems while excluding other community-based values. We conducted 312 surveys of general community members and regional researchers and decision-makers (specialists) to understand local perceptions and values of watershed ES and natural resource management in South America’s southern Patagonian ecoregion. Results indicated that specialists shared many similar values of ES with community members, but at the same time their mentalities did not capture the diversity of values that existed within the broader community. The supporting services were most highly valued by both groups, but generally poorly understood by the community. Many services that are not easily captured in monetary terms, particularly cultural services, were highly valued by community members and specialists. Both groups perceived a lack of communication and access to basic scientific information in current management approaches and differed slightly in their perspective on potential threats to ES. We recommend that a community-based approach be integrated into the natural resource management framework that better embodies the diversity of values that exist in these communities, while enhancing the science-society dialog and thereby encouraging the application of multiple forms of ecological knowledge in place-based environmental management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号