首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Irrigation with reclaimed effluent (RE) is essential in arid and semiarid regions. Reclaimed effluent has the potential to stimulate gaseous N losses and affect other soil N processes. No direct measurements of the N2 and N2O emissions from Mediterranean soils have been conducted so far. We used the 15N gas flux method in a field and a laboratory experiment to study the effect of RE irrigation on gaseous N losses and other N transformations in a Grumosol (Chromoxerert) soil. The fluxes of N2, N2O, and NH3 were measured from six Grumosol lysimeters following application of either fresh water or RE. The N fertilizer was applied either as 15NH4 or 15NO3. Only up to 0.3% from the applied N fertilizer was lost as N2O + NH3. Reclaimed effluent enhanced the losses of NH3, but did not affect those of N2O. Nitrification and denitrification were equally important to N2O production. Laboratory incubations were performed to both confirm the influence of the irrigation water type and to test the effect of moisture content. Significant quantities of N2 and N2O (up to 3.1% of the applied fertilizer) were emitted from saturated soils. Reclaimed effluent application did not induce higher N2O emissions, yet significantly more (approximately 33%) N2 was emitted from RE-irrigated soils. Denitrification contributed up to 75% of the N2O amounts emitted from saturated soils. Reclaimed effluent application inhibited nitrification in the Grumosol by 15 to 25% and induced NO2 accumulation in soils incubated at a field-capacity moisture content.  相似文献   

2.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

3.
High N fertilizer and irrigation amounts applied to potato (Solanum tuberosum L.) on coarse-textured soils often result in nitrate (NO3) leaching and low recovery of applied fertilizer N. This 3-yr study compared the effects of two rates (140 and 280 kg N ha(-1)) of a single polyolefin-coated urea (PCU) application versus split applications of urea on 'Russet Burbank' potato yield and on NO3 leaching and N recovery efficiency (RE) on a loamy sand. Standard irrigation was applied in all years and excessive irrigation was used in another experiment in the third year. At the recommended rate of 280 kg N ha(-1), NO3 leaching during the growing season was 34 to 49% lower with PCU than three applications of urea. Under standard irrigation in the third year, leaching from five applications of urea (280 kg N ha(-1)) was 38% higher than PCU. Under leaching conditions in the first year (> or = 25 mm drainage water in at least one 24-h period) and excessive irrigation in the third year, PCU at 280 kg N ha(-1) improved total and marketable tuber yields by 12 to 19% compared with three applications of urea. Fertilizer N RE estimated by the difference and 15N isotope methods at the 280 kg N ha(-1) rate was, on average, higher with PCU (mean 50%) than urea (mean 43%). Fertilizer N RE values estimated by the isotope method (mean 51%) were greater than those estimated by the difference method (mean 47%). Results from this study indicate that PCU can reduce leaching and improve N recovery and tuber yield during seasons with high leaching.  相似文献   

4.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

5.
Intensively managed grasslands are potentially a large source of NH3, N2O, and NO emissions because of the large input of nitrogen (N) in fertilizers. Addition of nitrification inhibitors (NI) to fertilizers maintains soil N in ammonium form. Consequently, N2O and NO losses are less likely to occur and the potential for N utilization is increased, and NH3 volatilization may be increased. In the present study, we evaluated the effectiveness of the nitrification inhibitor 3,4-dimethylpyrazol phosphate (DMPP) on NH3, N2O, NO, and CO2 emissions following the application of 97 kg N ha(-1) as ammonium sulfate nitrate (ASN) and 97 kg NH4+ -N ha(-1) as cattle slurry to a mixed clover-ryegrass sward in the Basque Country (northern Spain). After slurry application, 16.0 and 0.7% of the NH4+ -N applied was lost in the form of N2O and NO, respectively. The application of DMPP induced a decrease of 29 and 25% in N2O and NO emissions, respectively. After ASN application 4.6 and 2.8% of the N applied was lost as N2O and NO, respectively. The application of DMPP with ASN (as ENTEC 26; COMPO, Münster, Germany) unexpectedly did not significantly reduce N2O emissions, but induced a decrease of 44% in NO emissions. The amount of NH4+ -N lost in the form of NH3 following slurry and slurry + DMPP applications was 7.8 and 11.0%, respectively, the increase induced by DMPP not being statistically significant. Levels of CO2 emissions were unaffected in all cases by the use of DMPP. We conclude that DMPP is an efficient nitrification inhibitor to be used to reduce N2O and NO emissions from grasslands.  相似文献   

6.
Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N(2)O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N(2)O emissions. Lowering the amount of N(2)O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO(3)(-) levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO(3)(-) levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.  相似文献   

7.
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.  相似文献   

8.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   

9.
Container production of nursery crops is intensive and a potential source of nitrogen release to the environment. This study was conducted to determine if trickle irrigation could be used by container nursery producers as an alternative to standard overhead irrigation to reduce nitrogen release into the environment. The effect of overhead irrigation and trickle irrigation on leachate nitrate N concentration, flow-weighted nitrate N concentration, leachate volume, and plant growth was investigated using containerized rhododendron (Rhododendron catawbiense Michx. 'Album') supplied with a controlled-release fertilizer and grown outdoors on top of soil-monolith lysimeters. Leachate was collected over two growing seasons and overwinter periods, and natural precipitation was allowed as a component of the system. Precipitation accounted for 69% of the water entering the overhead-irrigated system and 80% of the water entering the trickle-irrigated system. Leachate from fertilized plants exceeded the USEPA limit of 10 mg L(-1) at several times and reached a maximum of 26 mg L(-1) with trickle irrigation. Average annual loss of nitrate N in leachate for fertilized treatments was 51.8 and 60.5 kg ha(-1) for the overhead and trickle treatments, respectively. Average annual flow-weighted concentration of nitrate N in leachate of fertilized plants was 7.2 mg L(-1) for overhead irrigation and 12.7 mg L(-1) for trickle irrigation. Trickle irrigation did not reduce the amount of nitrate N leached from nursery containers when compared with overhead irrigation because precipitation nullified the potential benefits of reduced leaching fractions and irrigation inputs provided under trickle irrigation.  相似文献   

10.
Understanding water and nutrient transport through the soil profile is important for efficient irrigation and nutrient management to minimize excess nutrient leaching below the rootzone. We applied four rates of N (28, 56, 84, and 112 kg N ha(-1); equivalent to one-fourth of annual N rates being evaluated in this study for bearing citrus trees), and 80 kg Br- ha(-1) to a sandy Entisol with >25-yr-old citrus trees to (i) determine the temporal changes in NO3-N and Br- distribution down the soil profile (2.4 m), and (ii) evaluate the measured concentrations of NO3-N and Br- at various depths with those predicted by the Leaching Estimation and Chemistry Model (LEACHM). Nitrate N and Br concentrations approached the background levels by 42 and 214 d, respectively. Model-predicted volumetric water content and concentrations of NO3-N and Br- at various depths within the entire soil profile were very close to measured values. The LEACHM data showed that 21 to 36% of applied fertilizer N leached below the root zone, while tree uptake accounted for 40 to 53%. Results of this study enhance our understanding of N dynamics in these sandy soils, and provide better evaluation of N and irrigation management to improve uptake efficiency, reduce N losses, and minimize the risk of ground water nitrate contamination from soils highly vulnerable to nutrient leaching.  相似文献   

11.
The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water.  相似文献   

12.
Cover crops are a management option to reduce NO3 leaching under cereal grain production. A 2-yr field lysimeter study was established in Uppsala, Sweden, to evaluate the effect of a perennial ryegrass (Lolium perenne L.) cover crop interseeded in barley (Hordeum vulgare L.) on NO3-N leaching and availability of N to the main crop. Barley and ryegrass or barley alone were seeded in mid-May 1992, in lysimeters (03-m diam. x 1.2-m depth) of an undisturbed, well-drained, sandy loam soil. Fertilizer N was applied at the same time as labeled l5NH415NO3 (10 atom % 15N) at a rate of 100 kg N ha(-1). In 1993, barley was reseeded in May in the lysimeters but with nonlabeled NH4NO3 and no cover crop (previous year's cover crop incorporated just prior to seeding). Barley yields and total and fertilizer N uptake in Year 1 (1992) were unaffected by cover crop. Total aboveground N uptake by the ryegrass was 28 kg ha(-1) at the time of incorporation the following spring. Recovery of fertilizer-derived N in May 1993 was about 100%; 53% in soil, 46% in barley, <2% in ryegrass, and negligible amounts in leachate. In May 1994, the corresponding figures were: 32% in soil, <3% in barley, and, again, negligible amounts in leachate. The cover crop reduced concentrations of NO3-N in the leachate considerably (<5 mg L(-1), compared with 10 to 18 mg L(-1) without cover crop) at most sampling times from November 1992 to April 1994, and reduced the total amount of NO3-N leached (22 compared with 8 kg ha(-1)).  相似文献   

13.
Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being conducted in the Likang Landfill (Guangzhou, China) where leachate recirculation had been practiced for 8 yr. Monthly productions and fluxes of N2O from leachate and soil were studied from June to November 2000. Environmental and chemical factors regulating N2O production were also accessed. An impermeable top liner was not used at this site; municipal solid waste was simply covered by inert soil and compacted by bulldozers. A high N2O emission rate (113 mg m-2 h-1) was detected from a leachate pond purposely formed on topsoil within the landfill boundary after leachate irrigation. A high N2O level (1.09 micrograms L-1) was detected in a gas sample emitted from topsoil 1 m from the leachate pond. Nitrous oxide production from denitrification in leachate-contaminated soil was at least 20 times higher than that from nitrification based on laboratory incubation studies. The N2O levels emitted from leachate ponds were compared with figures reported for different ecosystems and showed that the results of the present study were 68.7 to 88.6 times higher. Leachate recirculation can be a cost-effective operation in reducing the volume of leachate to be treated in landfill. However, to reduce N2O flux, leachate should be applied to underground soil rather than being irrigated and allowed to flow on topsoil.  相似文献   

14.
Maximizing utilization of effluent nutrients by forage grasses requires a better understanding of irrigation rate and timing effects. This study was conducted in 1998 and 1999 on a Vaiden silty clay (very-fine, smectitic, thermic Aquic Dystrudert) soil to determine the effects of swine lagoon effluent irrigation rate and timing on bermudagrass [Cynodon dactylon (L.) Pers.] growth, nitrogen (N) and phosphorus (P) recovery, and postseason soil profile NO3(-)-N. Treatments consisted of swine effluent irrigation at the rates of 0, 5, 10, 15, and 20 ha-cm. Two additional treatments included 2.5 ha-cm applied on 1 September and 1 October in addition to a base summer rate of 10 ha-cm. In both years for early to mid-season irrigation, bermudagrass dry matter yield quadratically increased with increasing swine effluent irrigation rates. Averaged across years, effluent irrigation in October resulted in 30% less dry matter than in September. For late-season irrigation, apparent N recovery averaged 59% less and P recovery averaged 46% less with a delay in irrigation from 1 September to 1 October. The greatest quantity of soil NO3(-)-N was associated with both the greatest effluent rate and October irrigation treatments. Minimal yield benefit was obtained when effluent was applied at rates greater than 10 ha-cm during the summer months. Late-season irrigation, especially after 1 October for areas with similar climatic conditions, should be avoided to maximize synchronization of nutrient availability with maximum growth rates to minimize potential offsite movement of residual soil N and P.  相似文献   

15.
In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by 2006. These results highlight an intersection of the N and P cycles potentially important for managing the quality of ground water discharged to surface water.  相似文献   

16.
Livestock manure in feedlots releases ammonia (NH3), which can be sorbed by nearby soil and plants. Ammonia sorption by soil and its effects on soil and perennial grass N contents downwind from two large cattle feedlots in Alberta, Canada were investigated from June to October 2002. Atmospheric NH3 sorption was measured weekly by exposing air-dried soil at sampling points downwind along 1700-m transects. The amount of NH3 sorbed by soil was 2.60 to 3.16 kg N ha(-1) wk(-1) near the source, declining to about 0.25 kg N ha(-1) wk(-1) 1700 m downwind, reflecting diminishing atmospheric NH3 concentrations. Ammonia sorption at a control site away from NH3 sources was much lower: 0.085 kg N ha(-1) wk(-1). Based on these rates, about 19% of emitted NH3 is sorbed by soil within 1700 m downwind of feedlots. Field soil and grass samples from the transect lines were analyzed for total N (TN) and KCl-extractable N content (soil only). Nitrate N content in field soil followed a trend similar to that of atmospheric NH3 sorption. Soil TN contents, because of high background levels, showed no clear pattern. The TN content of grass, downwind of the newer feedlot, followed a pattern similar to that of NH3 sorption; downwind of the older feedlot, grass TN was correlated to soil TN. Our results suggest that atmospheric NH3 from livestock operations can contribute N to local soil and vegetation, and may need to be considered when determining fertilizer rates and assessing environmental impact.  相似文献   

17.
By 19%, standard remediation techniques had significantly reduced the concentration of nitrate nitrogen (NO3- -N) in local ground water at the site of a 1989 anhydrous ammonia spill, but NO3- -N concentrations in portions of the site still exceeded the public drinking water standard. Our objective was to determine whether local soil and ground water quality could be improved with alfalfa (Medicago sativa L.). A 3-yr study was conducted in replicated plots (24 by 30 m) located hydrologically upgradient of the ground water under the spill site. Three alfalfa entries ['Agate', Ineffective Agate (a non-N2-fixing elite germplasm similar to Agate), and MWNC-4 (an experimental germplasm)] were seeded in the spring of 1996. Corn (Zea mays L.) or wheat (Triticum aestivum L.) was seeded adjacent to the alfalfa each year. Crops were irrigated with N-containing ground water to meet water demand. During the 3-yr period, about 540 kg of inorganic N was removed from the aquifer through irrigation of 4.9 million L water. Cumulative N removal from the site over 3 yr was 972 kg N ha(-1) in Ineffective Agate alfalfa hay, compared with 287 kg N ha(-1) for the annual cereal grain. Soil solution NO3- concentrations were reduced to low and stable levels by alfalfa, but were more variable under the annual crops. Ground water quality improved, as evidenced by irrigation water N concentration. We do not know how much N was removed by the N2-fixing alfalfas, but it appears that either fixing or non-N2-fixing alfalfa will effectively remove inorganic N from N-affected sites.  相似文献   

18.
Field experiments often assume that Br-, 14NO3(-)-N, and 15NO3(-)-N have similar leaching kinetics. This study tested this assumption. Twenty-four undisturbed soil columns (15-cm diameter) were collected from summit-shoulder, backslope, and footslope positions of a no-tillage field with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Each of the landscape positions had a different soil series. After conditioning the columns with 4 L of 0.01 M CaCl2 (2 pore volumes), 15N-labeled Ca(NO3)2 and KBr were applied to the soil surface and leached with 4 L of 0.01 M CaCl2. Leachate was collected, weighed, and analyzed for NO3(-)-N, NH4(+)-N, 15N, 14N, and Br-. The total amount of 15NO3(-)-N and 14NO3(-)-N collected in 1000, 2000, and 3000 mL of leachate was similar. These data suggest that 15N discrimination during leaching did not occur. Bromide leached faster through the columns than NO3(-)-N. The more rapid transport of Br- than NO3(-)-N was attributed to lower Br- (0.002 +/- 0.036 mg kg(-1)) than NO3(-)-N (0.17 +/- 0.03 mg kg(-1)) sorption. Results from this study suggest that (i) if Br- is used to estimate NO3(-)-N leaching loss, then NO3(-)-N leaching losses may be overestimated by 25%; (ii) the potential exists for landscape position to influence anion retention and movement in soil; and (iii) 15N discrimination was not detected during the leaching process.  相似文献   

19.
The effect of soil fumigation on N mineralization and nitrification needs to be better quantified to optimize N fertilizer advice and predict NO(-)(3) concentrations in crops and NO(-)(3) leaching risks. Seven soils representing a range in soil texture and organic matter contents were fumigated with Cyanamid DD 95 (a mixture of 1,3-dichloropropane and 1,3-dichloropropene). After removal of the fumigant, the fumigated soils and unfumigated controls were incubated for 20 wk and N mineralization and nitrification were monitored by destructive sampling. The average short-term N mineralization rates (k(s)) were significantly larger in the fumigated than in the unfumigated soils (P = 0.025), but the differences in k(s) between fumigated and unfumigated soils could not be related to soil properties. The average long-term N mineralization rates (k(l)) were slightly larger in the fumigated soils but the difference with the unfumigated soils was not significant. Again, the differences in k(l) values could not be related to soil properties. Nitrification was inhibited completely for at least 3 wk in all soils, and an effect on nitrification could be observed up to 17 wk in one soil. An S-shaped function was fitted to the nitrification data corrected for N mineralization, and both the rate constant (gamma) and the time at which maximum nitrification was reached (t(max)) were strongly correlated to soil pH. However, since no correlations were found between the effect of fumigation on N mineralization and soil properties, taking into account the effects of fumigation in fertilizer advice and in the prediction of NO(-)(3) leaching risks will need further research.  相似文献   

20.
Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号