首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
ABSTRACT: The Gunnison River in the Gunnison Gorge is a canyon river where upstream dams regulate mainstem discharge but do not affect debris-flow sediment supply from tributaries entering below the reservoirs. Regulation since 1966 has altered flood frequency, streambed mobility, and fluvial geomorphology creating potential resource-management issues. The duration of moderate streamflows between 32.3 and 85.0 m3/s has increased threefold since 1966. This, along with flood-peak attenuation, has facilitated fine-sediment deposition and vegetation encroachment on stream banks. The Shields equation and on-site channel geometry and bed-material measurements were used to assess changes in sediment entrainment in four alluvial reaches. Sand and fine gravel are transported through riffle/pool reaches at most discharges, but the cobbles and boulders composing the streambed in many reaches now are infrequently entrained. Periodic debris flows add coarse sediment to rapids and can increase pool elevation and the streambed area affected by backwater and fine-sediment accumulation. Debris-flow supplied boulders accumulate on fans and in rapids and constrict the channel until reworked by larger floods. The response to streamflow-régime changes in the Gunnison Gorge could serve as an analog for alluvial reaches in other regulated canyon rivers.  相似文献   

2.
The effect of two wetland plants, Typha latifolia L. (cattail) and Phragmites australis (Cav.) Trin. ex Steud (common reed), on the fate of Cr(VI) in wetland sediments was investigated using greenhouse bench-scale microcosm experiments. The removal of Cr(VI) was monitored based on the vertical profiles of aqueous Cr(VI) in the sediments. The Cr(VI) removal rates were estimated taking into account plant transpiration, which was found to significantly concentrate dissolved species in the sediments. After correcting for evapotranspiration, the actual Cr(VI) removal rates were significantly higher than would be inferred from uncorrected profiles. On average, the Cr(VI) removal rates were 0.005 to 0.017 mg L(-1) d(-1), 0.0003 to 0.08 mg L(-1) d(-1), and 0.004 to 0.13 mg L(-1) d(-1) for the control, T. latifolia, and P. australis microcosms, respectively. The fate of the removed Cr(VI) was examined by determining the quantity and chemical speciation of the Cr in the sediment and plant materials. Chromium(III) was the dominant form of Cr in both the sediment and plants, and precipitation of Cr(III) in the sediment was the major pathway responsible for the disappearance of aqueous Cr(VI) from the pore water. Incubation results showed that abiotic reduction was the primary mechanism underlying Cr(VI) removal in the microcosm sediments. Organic compounds produced by plants, including root exudates and mineralization products of dead roots, are thought to be the factor that is either directly or indirectly responsible for the gap between Cr(VI) removal efficiencies in the sediments of the vegetated and unvegetated microcosms.  相似文献   

3.
A study on sediment transport and channel change was conducted on Zayante Creek and the lower San Lorenzo River in Santa Cruz County, California. A rainstorm with a recurrence interval locally in excess of 150 years occurred during the study year, 1982 WY. Stream surveys indicated that significant aggradation occurred during and after the peak flood. Upper study reaches were substantially recovered after high flows of early April, but the lower study reaches still had significant filling of pools and burial of riffles by sand. Increases in width-depth ratio were minor and localized in upper reaches, but were significant in lower reaches. Large inputs of sand, primarily from landsliding, altered the sediment transport regime. A higher proportion of the bedload is now transported by lower flows than before the January event. Roads and sand quarries contributed significantly to sediment input to the stream. A proposed dam may alter the sediment transport regime of Zayante Creek. Mitigating the effects of this dam on downstream fish habitat may require occasional bankfull discharges.  相似文献   

4.
ABSTRACT: The Buffalo River is a tributary to the Mississippi River in west-central Wisconsin that drains a watershed dominated by agricultural land uses. Since 1935, backwater from Lock and Dam 4 on the Mississippi River has inundated the mouth of the Buffalo's valley. Resurveys of a transect first surveyed across the lake in 1935 and cesium-137 dating of backwater sediments reveal that sedimentation rates at the Buffalo's mouth have remained unchanged since the mid-1940s. Study results indicate that sediment yields from the watershed have persisted at relatively high levels over a period of several decades despite pronounced trends toward less cultivated land and major efforts to control soil erosion from agricultural land. The maintenance of sediment yields is probably due to increased channel conveyance capacities resulting from incision along some tributary streams since the early 1950s. Post-1950 incision extended the network of historical incised tributary channels, enhancing the efficient delivery of sediment from upland sources to downstream sites.  相似文献   

5.
Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and landuse affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Landuse impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of instream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Landuse impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting landuse impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional landuse impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.  相似文献   

6.
This paper recounts our predictions of channel evolution of the Black Vermillion River (BVR) and sediment yields associated with the evolutionary sequence. Channel design parameters allowed for the prediction of stable channel form and coincident sediment yields. Measured erosion rates and basin‐specific bank erosion curves aided in prediction of the stream channel succession time frame. This understanding is critical in determining how and when to mitigate a myriad of instability consequences. The BVR drains approximately 1,062 km2 in the glaciated region of Northeast Kansas. Once tallgrass prairie, the basin has been modified extensively for agricultural production. As such, channelization has shortened the river by nearly 26 km from pre‐European dimensions; shortening combined with the construction of numerous flow‐through structures have produced dramatic impacts on discharge and sediment dynamics. Nine stream reaches were established within three main tributaries of the BVR in 2007. Reaches averaged 490 m in length, were surveyed, and assessed for channel stability, while resurveys were conducted annually through 2010 to monitor change. This work illustrates the association of current stream state, in‐channel sediment contributions, and prediction of future erosion rates based on stream evolution informed by multiple models. Our findings suggest greater and more rapid sedimentation of a federal reservoir than has been predicted using standard sediment prediction methods.  相似文献   

7.
The purpose of this research is to study the temporal and spatial sediment delivery to and within the stream network following a wildfire on a chaparral watershed in Arizona, USA. Methods include interpretation of channel processes (aggradation, degradation) from sequential aerial photographs, field measurements of sediment delivery, and overland flow from ten microwatersheds having different vegetation cover (no vegetation, chaparral cover, and bare with vegetation buffer strips). The response of the watershed to the fire was very complex. The fire reduced the chaparral cover to zero in most locations and severe erosion led to filling of the channels by sediment. With vegetation recovery, sediment delivery from the watershed practically ceased. Vegetation buffer strips were mainly responsible for arresting the sediment delivered from bare hillslopes. Relatively clear water, entering the channels, caused degradation in the tributaries that delivered the sediment into the main stream at El Oso Creek. Due to high water infiltration by immense volumes of sediment deposits in the middle reach, the sediment from the tributaries was deposited as in-channel fans. In contrast, the upper reach of El Oso Creek behaved similarly to the tributaries. It aggraded after the fire and was followed by degradation. The low reach of El Oso Creek is degrading because it is still adjusting base level to the incision of the master stream. Implications of this study are that land managers, concerned to avoid severe erosion and sedimentation following disturbance, should concentrate on the establishment and enhancement of vegetation buffer strips along channel banks.  相似文献   

8.
Abstract: Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine‐grained sediments emanating from upland and channel sources. The overall objective of the research reported here was to determine the amount of fine sediment delivered to Lake Tahoe from each of the 63 contributing watersheds. The research described in this report used combinations of field‐based observations of channel and bank stability with measured and simulated data on fine‐sediment loadings to estimate fine‐sediment loadings from unmonitored basins throughout the Lake Tahoe Basin. Loadings were expressed in the conventional format of mass per unit time but also in the number of particles finer than 20 μm, the latter for future use in a lake‐clarity model. The greatest contributors of fine sediment happened to be those with measured data, not requiring extrapolation. In descending order, they are as follows: Upper Truckee River [1,010 tonnes per year (T/year)], Blackwood Creek (846 T/year), Trout Creek (462 T/year), and Ward Creek (412 T/year). Summing estimated values from the contributing watersheds provided an average, annual estimate of fine‐sediment (<0.063 mm) loadings to the lake of 5,206 T/year. A total of 7.79E + 19 particles in the 5‐20 μm fraction were calculated to enter Lake Tahoe in an average year with the Upper Truckee River accounting for almost 25% of the total. Contributions from Blackwood, Ward, Trout, and Third creeks account for another 23% of these very fine particles. Thus, these five streams making up about 40% of the basin area, account for almost 50% of all fine‐sediment loadings to the lake. Contribution of fine sediment from streambank erosion were estimated by developing empirical relations between measured or simulated bank‐erosion rates with a field‐based measure of the extent of bank instability along given streams. An average, annual fine‐sediment loading from streambank erosion of 1,305 T/year was calculated. This represents about 25% of the average, annual fine‐sediment load delivered to the lake from all sources. The two largest contributors, the Upper Truckee River (639 T/year) and Blackwood Creek (431 T/year), account for slightly more than 80% of all fines emanating from streambanks, representing about 20% of the fine sediment delivered to Lake Tahoe from all sources. Extrapolations of fine‐sediment loadings to the unmonitored watersheds are based on documented empirical relations, yet contain a significant amount of uncertainty. Except for those values derived directly from measured data, reported results should be considered as estimates.  相似文献   

9.
ABSTRACT: Gold was discovered in Georgia in 1829 and mined until about 1940 in the Dahionega Gold Belt of the north Goorgia Piedmont. Streams there are characterized by gravel beds and fine sandy to silty banks. Historical mining-related alluvium is clearly distinguished from prehistoric alluvium because it is contaminated with mercury (Hg), which was used by miners to amalgamate gold. Mercury concentrations in historical floodplain sediments range from 0.04 to 4.0 mg kg?1, exceeding background (0.04 mg kg1) by as much as two orders of magnitude near the core of the mining district and decreasing in the downstream direction. Low levels (≤ 0.1 mg kg1) of Hg are established within about 10–15 km from the source mines. The mercury-contaminated sediment exceeds sediment quality guidelines set by many agencies, and is a significant nonpoint source for mercury pollution. Hydraulic mining of saprolite, which began in 1868, and cutting of forests associated with mining and settlement caused unusually rapid sedimentation (1–3 cm yr?l) and floodplain aggradation in the region. After mining ceased, streams adjusted by downcutting and forming an historical-age terrace. A new floodplain is currently being formed as streams migrate lateraily and erode the mining-related sediment of the historical terrace. High magnitude floods are contained within the confines of the historical terrace, thus limiting quantities of over-bank sedimentation, causing channel bank erosion, and transmitting high sediment yields to reservoirs in the region.  相似文献   

10.
ABSTRACT: Much of the Obion River in western Tennessee was channelized into the 1960s. Stage data from three stream-flow gaging stations on the Obion were used to determine how channelization affected flood frequency and annual maximum stage. Channelization affected the upper and lower Obion River differently. Flooding has become infrequent on the upper Obion River since channelization, even during the winter and spring which is the wettest time of year. In contrast, except for the winter months, there has been little effect on flood frequency on the lower Obion River where stage is highly dependent on the Mississippi River. The Mississippi River often backs up and floods the Obion River more than 50 km above its mouth and may contribute to flooding at an even greater distance upstream by reducing the water-surface gradient and slowing discharge. Channelization on the upper section of the river and many of the small tributaries has increased flow efficiency, but has also caused channel erosion and downstream deposition, reducing the cross-sectional channel area and possibly contributing to downstream flooding. Maximum annual stages at the upper and lower Obion River changed little. Therefore, the maximum surface area, submerged at least once each year, has been unaffected by channelization.  相似文献   

11.
The transport of bedload and suspended sediments and particulate organic matter was evaluated in Huntington Creek, Utah, during a controlled release of water from Electric Lake Reservoir from August 7–10, 1979. Effects of the release on channel geometry and riffle composition also were assessed. Bedload transport rates increased from zero to 1,650 and 1,500 kg/hr at two cross sections as discharge was increased from 0.4 to 4.9 m3/s; transport rates then decreased erratically as discharge was held constant. Cross section measurements and sediment size analysis indicate that flows were insufficient to transport riffle sediments. Rapid increases in the transport rates of suspended sediments and particulate organic matter also occurred during rising discharge and again decayed when discharge became constant. Suspended sediment concentrations for samples obtained with an automatic pumping sampler were generally less than those found for samples obtained with a DH-48 sampler. Biological measurements still are needed to determine if such a release can improve fisheries habitat by removing fine sediments.  相似文献   

12.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

13.
ABSTRACT: During waning flood flows in gravel-bed streams, finegrained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes available to fill pools. The volume of fine sediment in pools can be measured by probing with a metal rod, and, when expressed as the fraction (V*) of scoured residual pooi volume (residual pool volume with fine sediment removed), can be used as an index of the supply of mobile sediment in a stream channel. Mean values of V* were as high as 0.5 and correlated with qualitative evaluations of sediment supply in eight tributaries of the Trinity River, northwestern California. Fine-sediment volume correlated strongly with scoured pool volume in individual channels, but plots of V* versus pool volume and water surface slope revealed secondary variations in fines volume. In sediment-rich channels, V* correlated positively with scoured pool volume; in sediment-poor channels, V* correlated negatively with water-surface slope. Measuring fine sediment in pools can be a practical method to evaluate and monitor the supply of mobile sediment in gravel-bed streams and to detect and evaluate sediment inputs along a channel network.  相似文献   

14.
These last decades, the Berre lagoon (in southeastern France) has been deeply affected since the 1930s by strong inputs of contaminants associated with industrial development and since 1966 by huge inputs of freshwater and silts due to the installation of a hydroelectric power plant. Surveys of the surface sediment contamination have been sparsely performed since 1964 for management and research purposes. These surveys were performed by various laboratories that investigated different chemicals and sampling areas using different analysis protocols. Therefore, the available data are disconnected in time and space and differ in quality. In order to reconstruct coherent time series of sediment contamination from this heterogeneous datasets and to discuss the influences of industrial and hydroelectric discharges we used a statistical approach. This approach is based on Principal Component Analysis (PCA) and Fuzzy clustering analysis on data from one extensive survey realized on surface sediments in 1976. The PCA allowed identifying two geochemical indexes describing the main surface sediment geochemical characteristics. The fuzzy clustering analysis on these indexes allowed identifying sub-areas under the specific influence of industrial or hydroelectric discharges. This allowed us to reconstruct, for each sub-area, a coherent and interpretable long-term time series of sediment contamination from the available database. Reconstructed temporal trends allowed us to estimate: (i) the overall decrease of sediment contamination since the mid-1970 attributed to industrial discharge regulations enacted at this period and (ii) the dilution of the concentrations of sediment bound contaminants induced by the hydroelectric power plant and its associated particulate matter inputs.  相似文献   

15.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

16.
Abstract: Both ground rain gauge and remotely sensed precipitation (Next Generation Weather Radar – NEXRAD Stage III) data have been used to support spatially distributed hydrological modeling. This study is unique in that it utilizes and compares the performance of National Weather Service (NWS) rain gauge, NEXRAD Stage III, and Tropical Rainfall Measurement Mission (TRMM) 3B42 (Version 6) data for the hydrological modeling of the Middle Nueces River Watershed in South Texas and Middle Rio Grande Watershed in South Texas and northern Mexico. The hydrologic model chosen for this study is the Soil and Water Assessment Tool (SWAT), which is a comprehensive, physical‐based tool that models watershed hydrology and water quality within stream reaches. Minor adjustments to selected model parameters were applied to make parameter values more realistic based on results from previous studies. In both watersheds, NEXRAD Stage III data yields results with low mass balance error between simulated and actual streamflow (±13%) and high monthly Nash‐Sutcliffe efficiency coefficients (NS > 0.60) for both calibration (July 1, 2003 to December 31, 2006) and validation (2007) periods. In the Middle Rio Grande Watershed NEXRAD Stage III data also yield robust daily results (time averaged over a three‐day period) with NS values of (0.60‐0.88). TRMM 3B42 data generate simulations for the Middle Rio Grande Watershed of variable qualtiy (MBE = +13 to ?16%; NS = 0.38‐0.94; RMSE = 0.07‐0.65), but greatly overestimates streamflow during the calibration period in the Middle Nueces Watershed. During the calibration period use of NWS rain gauge data does not generate acceptable simulations in both watersheds. Significantly, our study is the first to successfully demonstrate the utility of satellite‐estimated precipitation (TRMM 3B42) in supporting hydrologic modeling with SWAT; thereby, potentially extending the realm (between 50°N and 50°S) where remotely sensed precipitation data can support hydrologic modeling outside of regions that have modern, ground‐based radar networks (i.e., much of the third world).  相似文献   

17.
A river system is a network of intertwining channels and tributaries, where interacting flow and sediment transport processes are complex and floods may frequently occur. In water resources management of a complex system of rivers, it is important that instream discharges and sediments being carried by streamflow are correctly predicted. In this study, a model for predicting flow and sediment transport in a river system is developed by incorporating flow and sediment mass conservation equations into an artificial neural network (ANN), using actual river network to design the ANN architecture, and expanding hydrological applications of the ANN modeling technique to sediment yield predictions. The ANN river system model is applied to modeling daily discharges and annual sediment discharges in the Jingjiang reach of the Yangtze River and Dongting Lake, China. By the comparison of calculated and observed data, it is demonstrated that the ANN technique is a powerful tool for real-time prediction of flow and sediment transport in a complex network of rivers. A significant advantage of applying the ANN technique to model flow and sediment phenomena is the minimum data requirements for topographical and morphometric information without significant loss of model accuracy. The methodology and results presented show that it is possible to integrate fundamental physical principles into a data-driven modeling technique and to use a natural system for ANN construction. This approach may increase model performance and interpretability while at the same time making the model more understandable to the engineering community.  相似文献   

18.
ABSTRACT: Stream channel stability is affected by peak flows rather than average annual water yield. Timber harvesting and other land management activities that contribute to soil compaction, vegetation removal, or increased drainage density can increase peak discharges and decrease the recurrence interval of bankfull discharges. Increased peak discharges can cause more frequent movement of large streambed materials, leading to more rapid stream channel change or instability. This study proposes a relationship between increased discharge and channel stability, and presents a methodology that can be used to evaluate stream channel stability thresholds on a stream reach basis. Detailed surveys of the channel cross section, water surface slope, streambed particle size distribution, and field identification of bankfull stage are used to estimate existing bankfull flow conditions. These site specific stream channel characteristics are used in bed load movement formulae to predict critical flow conditions for entrainment of coarse bed material (D84 size fraction). The “relative bed stability” index, defined as the ratio of critical flow condition to the existing condition at bankfull discharge, can predict whether increased peak discharges will exceed stream channel thresholds.  相似文献   

19.
Kroes, Daniel E. and Cliff R. Hupp, 2010. The Effect of Channelization on Floodplain Sediment Deposition and Subsidence Along the Pocomoke River, Maryland. Journal of the American Water Resources Association (JAWRA) 46(4): 686-699. DOI: 10.1111/j.1752-1688.2010.00440.x Abstract: The nontidal Pocomoke River was intensively ditched and channelized by the mid-1900s. In response to channelization; channel incision, head-cut erosion, and spoil bank perforation have occurred in this previously nonalluvial system. Six sites were selected for study of floodplain sediment dynamics in relation to channel condition. Short- and long-term sediment deposition/subsidence rates and composition were determined. Short-term rates (four years) ranged from 0.6 to 3.6 mm/year. Long-term rates (15-100+ years) ranged from −11.9 to 1.7 mm/year. 137Cs rates (43 years) indicate rates of 0.24 to 7.4 mm/year depending on channel condition. Channelization has limited contact between streamflow and the floodplain, resulting in little or no sediment retention in channelized reaches. Along unchannelized reaches, extended contact and depth of river water on the floodplain resulted in high deposition rates. Drainage of floodplains exposed organic sediments to oxygen resulting in subsidence and releasing stored carbon. Channelization increased sediment deposition in downstream reaches relative to the presettlement system. The sediment storage function of this river has been dramatically altered by channelization. Results indicate that perforation of spoil banks along channelized reaches may help to alleviate some of these issues.  相似文献   

20.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号