首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The U.S. Endangered Species Act (ESA) restricts federal agencies from carrying out actions that jeopardize the continued existence of any endangered species. The U.S. Supreme Court has emphasized that the language of the ESA and its amendments permits few exceptions to the requirement to give endangered species the highest priority. This paper estimates economic costs associated with one measure for increasing instream flows to meet critical habitat requirements of the endangered Rio Grande silvery minnow. Impacts are derived from an integrated regional model of the hydrology, economics, and institutions of the upper Rio Grande Basin in Colorado, New Mexico, Texas, and Mexico. One proposal for providing minimum streamflows to protect the silvery minnow from extinction would provide guaranteed year round streamflows of at least 50 cubic feet per second in the San Acacia reach of the upper Rio Grande. These added flows can be accomplished through reduced surface diversions by New Mexico water users in dry years when flows would otherwise be reduced below the critical level required by the minnow. Based on a 44‐year simulation of future inflows to the basin, we find that some agricultural users suffer damages, but New Mexico water users as a whole do not incur damages from a policy that reduces stream depletions sufficiently to provide habitat for the minnow. The same policy actually benefits downstream users, producing average annual benefits of over $200,000 per year for west Texas agriculture, and over $1 million for El Paso municipal and industrial water users, respectively. Economic impacts of instream flow deliveries for the minnow are highest in drought years.  相似文献   

2.
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer.  相似文献   

3.
This article presents a framework for integrating a regional geographic information system (GIS)‐based nitrogen dataset (Texas Anthropogenic Nitrogen Dataset, TX‐ANB) and a GIS‐based river routing model (Routing Application for Parallel computation of Discharge) to simulate steady‐state riverine total nitrogen (TN) transport in river networks containing thousands of reaches. A two‐year case study was conducted in the San Antonio and Guadalupe basins during dry and wet years (2008 and 2009, respectively). This article investigates TN export in urbanized (San Antonio) vs. rural (Guadalupe) drainage basins and considers the effect of reservoirs on TN transport. Simulated TN export values are within 10 percent of measured export values for selected stations in 2008 and 2009. Results show that in both years the San Antonio basin contributed a larger quantity than the Guadalupe basin of delivered TN to the coastal ocean. The San Antonio basin is affected by urban activities including point sources, associated with the city of San Antonio, in addition to greater agricultural activities. The Guadalupe basin lacks major metropolitan areas and is dominated by rangeland, rather than fertilized agricultural fields. Both basins delivered more TN to coastal waters in 2009 than in 2008. Furthermore, TN removal in the San Antonio and Guadalupe basins is inversely related to stream orders: the higher the order the more TN delivery (or the less TN removal).  相似文献   

4.
Despite their size, small farm ponds are important features in many landscapes. Yet hydrographical databases often fail to capture these ponds, and their impacts on watershed processes remain unclear. For a 230‐km2 portion of central Texas, United States (U.S.), we created a historical inventory of ponds and quantified the accuracy of automated detection methods under varying drought conditions. In addition, we documented pond dredging/enlargement events and identified sites that had been abandoned. We also analyzed sediment cores from downstream reservoirs to track changes in watershed sediment transport. Over 75 years, pond densities increased more than 350% — to among the highest documented in the U.S. — and the ability of automated methods to detect these ponds was highly dependent on drought severity (R2 = 0.96). Approximately 5% of ponds present in the 1950s were no longer present in 2012, while 33% were dredged between 1937 and 2012. Downstream reservoir sedimentation has decreased by an average of 55% as ponds have increased in number. These findings suggest that small ponds and the maintenance of trapping efficiency have large‐scale impacts on sediment dynamics. Accurately accounting for these storage effects is vital to water resource planning efforts.  相似文献   

5.
ABSTRACT: Survey data collected in the San Joaquin Valley of southern California and the Grand Valley of western Colorado reveal that residents of both areas believe that a severe sustained drought is likely to occur within the next 20–25 years and that their communities would be seriously impacted by such an event. Although a severe sustained drought affecting the Colorado River Basin would cause major economic and social disruptions in these and other communities, residents express little support for water management alternatives that would require significant shifts in economic development activities or in water use and allocation patterns. In particular, residents of these areas express little support for strategies such as construction and growth moratoriums, mandatory water conservation programs, water transfers from low-to high-population areas, water marketing, or reallocations of water from agricultural to municipal/industrial uses. This rejection of water management strategies that would require a departure from “business as usual” with respect to water use and allocations severely restricts the capacity of these and similar communities to respond effectively should a severe sustained drought occur.  相似文献   

6.
Invasions of nonnative species such as zebra mussels can have both ecological and economic consequences. The economic impacts of zebra mussels have not been examined in detail since the mid-1990s. The purpose of this study was to quantify the annual and cumulative economic impact of zebra mussels on surface water-dependent drinking water treatment and electric power generation facilities (where previous research indicated the greatest impacts). The study time frame was from the first full year after discovery in North America (Lake St. Clair, 1989) to the present (2004); the study area was throughout the mussels’ North American range. A mail survey resulted in a response rate of 31% for electric power companies and 41% for drinking water treatment plants. Telephone interviews with a sample of nonrespondents assessed nonresponse bias; only one difference was found and adjusted for. Over one-third (37%) of surveyed facilities reported finding zebra mussels in the facility and almost half (45%) have initiated preventive measures to prevent zebra mussels from entering the facility operations. Almost all surveyed facilities (91%) with zebra mussels have used control or mitigation alternatives to remove or control zebra mussels. We estimated that 36% of surveyed facilities experienced an economic impact. Expanding the sample to the population of the study area, we estimated $267 million (BCa 95% CI = $161 million–$467 million) in total economic costs for electric generation and water treatment facilities through late 2004, since 1989. Annual costs were greater ($44,000/facility) during the early years of zebra mussel infestation than in recent years ($30,000). As a result of this and other factors, early predictions of the ultimate costs of the zebra mussel invasion may have been excessive.  相似文献   

7.
Southard, Gregory M., Loraine T. Fries, and Aaron Barkoh, 2010. Prymnesium parvum: The Texas Experience. Journal of the American Water Resources Association (JAWRA) 46(1):14-23. DOI: 10.1111/j.1752-1688.2009.00387.x Abstract: Golden alga Prymnesium parvum was first identified in Texas during a fish kill investigation on the Pecos River in 1985. Since then golden alga kills occurred sporadically in a variety of waters in the western part of the state until 2001 when the alga became endemic in the Brazos, Canadian, Colorado, Red, and Rio Grande river systems, including the water supplies of two public fish hatcheries, the Possum Kingdom and Dundee state fish hatcheries. The increasing area adversely affected by the alga and frequent massive fish kills heightened public and political awareness and concerns regarding the ecological and economic impacts of P. parvum blooms. The Texas Parks and Wildlife Department (TPWD), the wildlife conservation agency of the state, responded to these concerns with a program to assess the ecological and economic impacts and to develop management options. To date 33 water bodies have been affected and losses are conservatively estimated at 34 million fish valued at US$13 million. Several sport fisheries, including smallmouth bass Micropterus dolomieu, striped bass Morone saxatilis, channel catfish Ictalurus punctatus, and blue catfish Ictalurus furcatus, have been severely affected. Additionally, 26 imperiled fish species occur in the affected water basins and some have been adversely affected. Economic losses associated with reduced fishing and other water-based recreational activities appear considerable. The combined economic losses to three counties (Palo Pinto, Stephens, and Young) surrounding Possum Kingdom reservoir for 2001 and 2003 were estimated at US$2.8 million and US$1.1 million, respectively. This paper describes how the TPWD responded to public and political concerns relative to the emergence of golden alga, its harmful effects to fisheries, and its historic and current statewide distribution.  相似文献   

8.
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning.  相似文献   

9.
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods.  相似文献   

10.
Recent severe drought events have occurred over the Ogallala Aquifer region (OAR) during the period 2011–2015, creating significant impacts on water resources and their use in regional environmental and economic systems. The changes in terrestrial water storage (TWS), as indicated by the Gravity Recovery and Climate Experiment (GRACE), reveals a detailed picture of the temporal and spatial evolution of drought events. The observations by GRACE indicate the worst drought conditions occurred in September 2012, with an average TWS deficit of ~8 cm in the northern OAR and ~11 cm in the southern OAR, consistent with precipitation data from the Global Precipitation Climatology Project. Comparing changes in TWS with precipitation shows the TWS changes can be predominantly attributable to variations in precipitation. Power spectrum and squared wavelet coherence analysis indicate a significant correlation between TWS change and the El Nino‐Southern Oscillation, and the influence of equatorial Pacific sea surface temperatures on TWS change is much stronger in the southern OAR than the northern OAR. The results of this study illustrate the value of GRACE in not just the diagnosis of significant drought events, but also in possibly improving the predictive power of remote signals that are impacted by nonregional climatic events (El Nino), ultimately leading to improved water resource management applications on a regional scale. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

11.
Stream temperatures are key indicators for aquatic ecosystem health, and are of particular concern in highly seasonal, water‐limited regions such as California that provide sensitive habitat for cold‐water species. Yet in many of these critical regions, the combined impacts of a warmer climate and urbanization on stream temperatures have not been systematically studied. We examined recent changes in air temperature and precipitation, including during the recent extreme drought, and compared the stream temperature responses of urban and nonurban streams under four climatic conditions and the 2008–2018 period. Metrics included changes in the magnitude and timing of stream temperatures, and the frequency of exceedance of ecologically relevant thresholds. Our results showed that minimum and average daily air temperatures in the region have increased by >1°C over the past 20 years, warming both urban and nonurban streams. Stream temperatures under drought warmed most (1°C–2°C) in late spring and early fall, effectively lengthening the summer warm season. The frequency of occurrence of periods of elevated stream temperatures was greater during warm climate conditions for both urban and nonurban streams, but urban streams experienced extreme conditions 1.5–2 times as often as nonurban streams. Our findings underscore that systematically monitoring and managing urban stream temperatures under climate change and drought is critically needed for seasonal, water‐limited urban systems.  相似文献   

12.
McMahon, Tyler G. and Mark Griffin Smith, 2012. The Arkansas Valley “Super Ditch”— An Analysis of Potential Economic Impacts. Journal of the American Water Resources Association (JAWRA) 00(0):000‐000. 1‐12. DOI: 10.1111/jawr.12005 Abstract: In Colorado’s Arkansas River basin, urban growth and harsh farming conditions have resulted in water transfers from agricultural to urban uses. Several studies have shown that these transfers have significant secondary economic impacts associated with the removal of irrigated land from production. In response, new methods of sharing water are being developed to allow water transfers that benefit both farm and urban economies, compared with previous permanent transfers that negatively impacted surrounding farm communities. One such project currently under development is the Arkansas Valley “Super Ditch,” which is a rotational crop fallowing plan based on long‐term water leasing designed to provide an annual supply of 25,000 acre‐feet of water (31.6 Mm3). This article analyzes the net benefits of implementing the “Super Ditch” for both the farmers and the surrounding community.  相似文献   

13.
ABSTRACT: In response to recent severe drought conditions throughout the state, Arizona recently developed its first drought plan. The Governor's Drought Task Force focused on limiting the economic and social impacts of future droughts through enhanced adaptation and mitigation efforts. The plan was designed to maximize the use of new, scientific breakthroughs in climate monitoring and prediction and in vulnerability assessment. The long term objective of the monitoring system is to allow for evaluation of conditions in multiple sectors and at multiple scales. Stakeholder engagement and decision support are key objectives in reducing Arizona's vulnerability in light of the potential for severe, sustained drought. The drivers of drought conditions in Arizona include the El Nino‐Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation.  相似文献   

14.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   

15.
ABSTRACT: Exports from the Sacramento‐San Joaquin Delta are an important source of water for Central Valley and Southern California users. The purpose of this paper is to estimate and analyze the effects increased exports to south of Delta users would have on the Sacramento Valley economy and water management if water were managed and reallocated for purely economic benefits, as if there were an ideal Sacramento Valley water market. Current Delta exports of 6,190 thousand acre‐feet per year were increased incrementally to maximum export pumping plant capacities. Initial increases in Delta exports did not increase regional water scarcity, but decreased surplus Delta flows. Further export increases raised agricultural scarcity. Urban users suffer increased scarcity only for exports exceeding 10,393 taf/yr. Expanding exports raises the economic value of expanding key facilities (such as Engle bright Lake and South Folsom Canal) and the opportunity costs of environmental requirements. The study illustrates the physical and economic capacity of the Sacramento Valley to further increase exports of water to drier parts of the state, even within significant environmental flow restrictions. More generally, the results illustrate the physical capacity for greater economic benefits and flexibility in water management within environmental constraints, given institutional capability to reoperate or reallocate water resources, as implied by water markets.  相似文献   

16.
ABSTRACT: This paper presents an analysis of the effects of different institutional arrangements and economic environments on water markets. Characteristics of water rights transfers in the South Platte Basin of Colorado and transfers of shares of the Northern Colorado Water Conservancy District (NCWCD) are compared to show how different institutional arrangements can affect the types and size distributions of transfers. The characteristics of water rights transfers in the prosperous South Platte are then compared with water rights transfer characteristics in the economically marginal Arkansas River basin of Colorado to identify the effects of different economic environments. Finally, the economic losses from reductions in irrigated acreage resulting from water transfers are estimated for the South Platte and Arkansas and compared with purchase prices by municipalities. Transfers in the South Platte were to new uses in the same basin, while more recent transfers in the Arkansas were to out of basin users. Transfers of South Platte rights and especially NCWCD shares were small and continuous over time, while transfers in the Arkansas were dominated by a few very large transfers. The negative impacts are judged to be more severe in the Arkansas basin than in the South Platte. Purchase prices paid by municipalities substantially exceeded capitalized transitional losses in the selling areas. In the South Platte, gains and losses were in the same basin, while the Arkansas absorbed the losses, with the benefits going to the purchasing basin.  相似文献   

17.
In mountains of the western United States, channel incision has drawn down the water table across thousands of square kilometers of meadow floodplain. Here climate change is resulting in earlier melt and reduced snowpack and water resource managers are responding by investing in meadow restoration to increase springtime storage and summer flows. The record‐setting California drought (2012–2015) provided an opportunity to evaluate this strategy under the warmer and drier conditions expected to impact mountain water supplies. In 2012, 0.1 km2 of meadow floodplain was reconnected by filling an incised channel through Indian Valley in the central Sierra Nevada Mountains of California. Despite sustained drought conditions after restoration, summer baseflow from the meadow increased 5–12 times. Before restoration, the total summer outflow from the meadow was 5% more than the total summer inflow. After restoration, total summer outflow from the meadow was between 35% and 95% more than total summer inflow. In the worst year of the drought (2015), when inflow to the meadow ceased for at least one month, summer baseflow was at least five times greater than before restoration. Groundwater levels also rose at four out of five sites near the stream channel. Filling the incised channel and reconnecting the meadow floodplain increased water availability and streamflow, despite unprecedented drought conditions.  相似文献   

18.
Water availability risk is a local issue best understood with watershed‐scale quantification of both withdrawal and consumptive demands in the context of available supply. Collectively, all water use sectors must identify, understand, and respond to this risk. A highly visual and computationally robust decision support tool, Water Prism, quantitatively explores mitigation responses to water risk on both a facility‐level and basin‐aggregated basis. Water Prism examines a basin water balance for a 40‐ to 60‐year planning horizon, distinguishes among water use sectors, and accounts for ecosystem water needs. The 2012 Texas State Water Plan was used to apply Water Prism to the Big Cypress‐Sulphur Basin (Texas). The case study showed Water Prism to be an accurate and convenient tool to provide fine‐scale understanding of water use in the context of available supply, evaluate multi‐sector combinations of conservation strategies, and quantify the effects of future demands and water availability. Analyses demonstrated water availability risks for rivers and reservoirs can vary within a basin and must be calculated independently, simulation of water balance conditions can help illuminate potential impacts of increasing demands, and scenario simulations can be used to evaluate relative conservation efficacy of different water resource management strategies for each sector. Based on case study findings, Water Prism can serve as a useful assessment tool for regional water planners.  相似文献   

19.
20.
Lakes are landscape features that influence connectivity of mass and energy by being foci for the reception, mixing, and provision of water and material. Where lake fractions are high, they influence hydrological connectivity. This behavior was exemplified in the Baker Creek watershed in Canada's Northwest Territories during a two‐year drought in which many lake levels declined below outlet elevations. This study evaluated how lakes controlled surface runoff connectivity reestablishment following the drought using a new assessment method, T‐TEL (time scales — thresholds, excesses, losses). Analysis of daily data showed that during a summer period following the drought, connectivity occurred between 0% and 41% of the time. The size of run‐of‐the‐river lakes relative to their upstream watershed area, and the upstream lake fraction, are two factors for connectivity. These terms represent a lake's ability to control the size of storage deficits relative to rainfall, and evaporation and storage losses along pathways. The connectivity magnitude–duration curve only aligned with the watershed flow duration curve during high‐water conditions, implying lakes functioned as individuals rather than as part of a perennial watercourse during much of the study. The T‐TEL method can be used to quantify consistent metrics of hydrologic connectivity that can be used for regionalization exercises and understanding hydrologic controls on material transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号