首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
联邦《石油污染条例》、州《溢油预防和应对法案》和《溢油预防和应对条例》共同构成了美国路易斯安那州自然资源损害评估制度体系,确立了评估活动主导者和参与者明确、程序清晰、客观公正、资金来源有保障,且融合了应急、评估、响应行动于一体的评估制度。我国正在建立的生态环境损害赔偿制度,虽然就损害评估已经形成了部分规范性文件,但多重视的是评估机构的资质管理和具体的评估技术方法,有必要借鉴域外经验,从主体构建、程序设计、多方参与、评估资金、融合评估和应急、恢复行动于一体五个方面完善评估管理制度。  相似文献   

2.
公众参与对区域环境治理绩效影响机制的实证研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用2011—2015年我国省际面板数据,通过主成分分析法构造区域环境污染指标以衡量区域环境治理绩效,进而建立面板数据模型,实证分析了三种公众环境参与方式(即投诉上访、献言建策和自媒体舆论)对区域环境治理绩效的直接和间接影响,以期为构建政府—企业—公众多元共治的环境治理体系提出建议。实证结果表明,我国公众环境参与对提升区域环境治理绩效有一定的积极作用,自媒体舆论对区域环境治理绩效的直接影响最大。同时,我国公众主要是通过参与并监督政府环境行政规制提升区域环境治理绩效,在参与地方政府环境法律政策的制定和实施,以及驱动地方政府环保资金投入方面尚有不足。因此,本文提出提升区域环境治理绩效的三点建议:创建公众环境参与政法平台,健全公众环境参与自媒体方式,增加环境治理的环保投资。  相似文献   

3.
ABSTRACT: In conventional flood damage reduction studies, flood damage is usually estimated with a damage function according to the depth of inundation. However, this method may not reflect the conditions of each family residing in the floodplain because it ignores not only the distribution of flood damage but also the effect of building characteristics and residents' preparedness. This paper uses data from a questionnaire based survey (N= 3,036) conducted 17 months after the Tokai Flood of 2000 that caused disastrous losses to household properties. It provides a conceptual “doughnut structure” model of flood damage to houses and house contents and a mathematical basis for models to explore the determinants of flood damage. Besides the inundation depth, house type significantly affects both the house structural and content damage probabilities, while house ownership and house structure affect house damage probability but not house content damage probability at a given depth. Inundation depth, residing period, and household income significantly affect both house and content damage values. In addition, house ownership has a significant impact on the house damage value, while house structure has an impact on content damage value.  相似文献   

4.
ABSTRACT: With implementation of the Flood Insurance Act of 1968 many additional local flood protection projects are being considered. Consulting engineers and local agencies need consistent methods to estimate flood damage in order to perform feasibility studies. Federal agencies have a great deal of data and long experience in making damage estimates but no comprehensive guides are available at the local level. Curves of flood damages to different residential structure types are presented. The relationships in use by the U. S. Federal Insurance Administration are shown to be reasonable and are recommended for use as approximate guides. Additional research is recommended and discussion of the paper is invited in order to make additional data available in the literature.  相似文献   

5.
We present a Digital Elevation Model‐based hydrologic analysis methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS scientific workflow in which a 1/3rd arc‐second (10 m) height above nearest drainage (HAND) raster data for the conterminous United States (CONUS) was computed and employed for subsequent inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration and scalable computing of the entire inundation mapping process on a hybrid supercomputing architecture. The first 1/3rd arc‐second CONUS HAND raster dataset was computed in 1.5 days on the cyberGIS Resourcing Open Geospatial Education and Research supercomputer. The inundation mapping process developed in our exploratory study couples HAND with National Water Model forecast data to enable near real‐time inundation forecasts for CONUS. The computational performance of HAND and the inundation mapping process were profiled to gain insights into the computational characteristics in high‐performance parallel computing scenarios. The establishment of the CFIM computational framework has broad and significant research implications that may lead to further development and improvement of flood inundation mapping methodologies.  相似文献   

6.
Stedinger, Jery R. and Veronica W. Griffis, 2011. Getting From Here to Where? Flood Frequency Analysis and Climate. Journal of the American Water Resources Association (JAWRA) 47(3):506‐513. DOI: 10.1111/j.1752‐1688.2011.00545.x Abstract: Modeling variations in flood risk due to climate change and climate variability are a challenge to our profession. Flood‐risk computations by United States (U.S.) federal agencies follow guidelines in Bulletin 17 for which the latest update 17B was published in 1982. Efforts are underway to update that remarkable document. Additional guidance in the Bulletin as to how to address variation in flood risk over time would be welcome. Extensions of the log‐Pearson type 3 model to include changes in flood risk over time would be relatively easy mathematically. Here an example of the use of a sea surface temperature anomaly to anticipate changes in flood risk from year to year in the U.S. illustrates this opportunity. Efforts to project the trend in the Mississippi River flood series beg the question as to whether an observed trend will continue unabated, has reached its maximum, or is really nothing other than climate variability. We are challenged with the question raised by Milly and others: Is stationarity dead? Overall, we do not know the present flood risk at a site because of limited flood records. If we allow for historical climate variability and climate change, we know even less. But the issue is not whether stationarity is dead – the issue is how to use all the information available to reliably forecast flood risk in the future: “Where do we go from here?”  相似文献   

7.
Black, Peter E., 2012. The U.S. Flood Control Program at 75: Environmental Issues. Journal of the American Water Resources Association (JAWRA) 48(2): 244‐255. DOI: 10.1111/j.1752‐1688.2011.00609.x Abstract: Recent, recurring, and increased magnitude floods adversely challenge long‐held and erroneous concepts of flood control. This article focuses on the environmental issues with comprehensively reviewed essentials of the United States (U.S.) riverine Flood Control Program, including news reports, scientific articles, books, and landmark treatises. For the past three‐quarters of a century, U.S. floods have continued (and will continue) to occur, causing increasing property damage with growing fiscal loss. Reasons include inattention to fundamental principles of physics, hydrology, and ecology. There are also important challenges involving environmental policy, economics, and common sense. Measures afforded by the existing program encourage and enable investment in floodplains while violating a variety of natural principles that make the situation worse. This detailed review includes the questionable (actually untrue) justification in the document‐setting policy for the 1936 Omnibus Flood Control Act. The well‐documented evidence is overwhelming. An alternative approach is presented that would enable and celebrate natural floods, managing their ecological and hydrological values, and not attempting to control them.  相似文献   

8.
This study contributes a bathtub‐style inundation prediction model with abstractions of coastal processes (i.e., storm surge and wave runup) for flood forecasting at medium‐range (weekly to monthly) timescales along the coastline of large lakes. Uncertainty from multiple data sources are propagated through the model to establish probabilistic bounds of inundation, providing a conservative measure of risk. The model is developed in a case study of the New York Lake Ontario shoreline, which has experienced two record‐setting floods over the course of three years (2017–2019). Predictions are developed at a parcel‐level and are validated using inundation accounts from an online survey and flyover imagery taken during the recent flood events. Model predictions are compared against a baseline, deterministic model that accounts for the same processes but does not propagate forward data uncertainties. Results suggest that a probabilistic approach helps capture observed instances of inundation that would otherwise be missed by a deterministic inundation model. However, downward biases are still present in probabilistic predictions, especially for parcels impacted by wave runup. The goal of the tool is to provide community planners and property owners with a conservative, parcel‐level assessment of flood risk to help inform short‐term emergency response and better prepare for future flood events.  相似文献   

9.
ABSTRACT: This work presents a flexible system called GIS‐based Flood Information System (GFIS) for floodplain modeling, flood damages calculation, and flood information support. It includes two major components, namely floodplain modeling and custom designed modules. Model parameters and input data are gathered, reviewed, and compiled using custom designed modules. Through these modules, it is possible for GFIS to control the process of flood‐plain modeling, presentation of simulation results, and calculation of flood damages. Empirical stage‐damage curves are used to calculate the flood damages. These curves were generated from stage‐damage surveys of anthropogenic structures, crops, etc., in the coastal region of a frequently flooded area in Chia‐I County, Taiwan. The average annual flood damages are calculated with exceedance probability and flood damages for the designed rainfalls of 2, 5, 10, 25, 50, 100, and 200 year recurrence intervals with a duration of 24 hours. The average annual flood depth in this study area can also be calculated using the same method. The primary advantages of GFIS are its ability to accurately predict the locations of flood area, depth, and duration; calculate flood damages in the floodplain; and compare the reduction of flood damages for flood mitigation plans.  相似文献   

10.
The increasing availability of multi‐scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model‐assimilated weather fields to produce ET for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model, which is now parameterized for operational applications, renamed as SSEBop. The innovative aspect of the SSEBop is that it uses predefined boundary conditions that are unique to each pixel for the “hot” and “cold” reference conditions. The SSEBop model was used for computing ET for 12 years (2000‐2011) using the MODIS and Global Data Assimilation System (GDAS) data streams. SSEBop ET results compared reasonably well with monthly eddy covariance ET data explaining 64% of the observed variability across diverse ecosystems in the CONUS during 2005. Twelve annual ET anomalies (2000‐2011) depicted the spatial extent and severity of the commonly known drought years in the CONUS. More research is required to improve the representation of the predefined boundary conditions in complex terrain at small spatial scales. SSEBop model was found to be a promising approach to conduct water use studies in the CONUS, with a similar opportunity in other parts of the world. The approach can also be applied with other thermal sensors such as Landsat.  相似文献   

11.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

12.
Abstract: Flood management problems are inherently complex, time‐bound and multi‐faceted, involving many decision makers (with conflicting priorities and dynamic preferences), high decision stakes, limited technical information (both in terms of quality and quantity), and difficult tradeoffs. Multi‐Criteria Decision Support Systems (MCDSS) can help to manage this complexity and decision load by combining value judgments and technical information in a structured decision framework. A brief overview of MCDSS is presented, an original MCDSS architecture is put forth, and future research directions are discussed, including extensions to Multi‐Criteria Spatial Decision Support Systems and group MCDSS (as flood management involves shared resources and broad constituencies). With application to the September 11‐12, 2000 Tokai floods in Japan, the proposed multi‐criteria decision support instruments enhance communication among stakeholders and improve emergency management resource allocation. In summary, by making the links among flood knowledge, assumptions and choices more explicit, MCDSS increases stakeholder satisfaction, saves lives, and reduces flood management costs, thereby increasing decision‐making effectiveness, efficiency and transparency.  相似文献   

13.
Tobin, Kenneth J. and Marvin E. Bennett, 2012. Validation of Satellite Precipitation Adjustment Methodology From Seven Basins in the Continental United States. Journal of the American Water Resources Association (JAWRA) 48(2): 221‐234. DOI: 10.1111/j.1752‐1688.2011.00604.x Abstract: The precipitation science community has expressed concern regarding the ability of satellite‐based precipitation products to accurately capture rainfall values over land. There has been some work that has focused on addressing the deficiencies of satellite precipitation products, particularly on the adjustment of bias. This article outlines a methodology that adjusts satellite products utilizing ground‐based precipitation data. The approach is not a simple bias adjustment, but is a three‐step process that transforms a satellite product based on a ground‐based precipitation product (NEXRAD‐derived Multisensor Precipitation Estimator [MPE] product or rain‐gauge data). The developed methodology was successfully applied to seven moderate‐to‐large sized watersheds from continental United States (CONUS) and northern Mexico over a spectrum of climatic regimes ranging from dry to humid settings. Methodology validation is based on comparison of observed and simulated streamflow generated with SWAT (Soil and Water Assessment Tool) model using unadjusted and adjusted precipitation products as input. Streamflow comparison is based on mass balance error and Nash‐Sutcliffe efficiency coefficient. Finally, the contribution of how adjustment to correct misses, false alarms, and bias impacts adjusted datasets and the potential impact that the adjustment methodology can have on hydrological applications such as water resource monitoring and flood prediction are explored.  相似文献   

14.
ABSTRACT: This paper presents a new methodology to calculate economic losses from hypothetical, extreme flood events, such as the Probable Maximum Flood. The methodology uses economic data compiled from already-available secondary sources, such as U.S. Census data on magnetic tapes, utilizing microcomputer and other electronic media. Estimates of land elevations are obtained from topographic maps, and flood elevations axe estimated using, for example, a dam breach and flood routing (DAMBRK) model (Fread, 1984). The calculations are performed at a disaggregate spatial scale, by various land use and industrial classification categories. The basic areal units are city blocks (for urbanized areas), enumeration districts, and Census tracts. Depth-damage functions, which provide an estimate of damages as a proportion of the existing value of the structure, are estimated statistically. Computer software (called DAMAGE) is used to combine the economic, flood elevation, and depth-damage information to compute economic losses for different possible flood stages and for different inflow events. Two case studies are presented as illustrations of the method.  相似文献   

15.
The National Flood Interoperability Experiment is a research collaboration among academia, National Oceanic and Atmospheric Administration National Weather Service, and government and commercial partners to advance the application of the National Water Model for flood forecasting. In preparation for a Summer Institute at the National Water Center in June‐July 2015, a demonstration version of a near real‐time, high spatial resolution flood forecasting model was developed for the continental United States. The river and stream network was divided into 2.7 million reaches using the National Hydrography Dataset Plus geospatial dataset and it was demonstrated that the runoff into these stream reaches and the discharge within them could be computed in 10 min at the Texas Advanced Computing Center. This study presents a conceptual framework to connect information from high‐resolution flood forecasting with real‐time observations and flood inundation mapping and planning for local flood emergency response.  相似文献   

16.
Variability and trends in water‐year runoff efficiency (RE) — computed as the ratio of water‐year runoff (streamflow per unit area) to water‐year precipitation — in the conterminous United States (CONUS) are examined for the 1951 through 2012 period. Changes in RE are analyzed using runoff and precipitation data aggregated to United States Geological Survey 8‐digit hydrologic cataloging units (HUs). Results indicate increases in RE for some regions in the north‐central CONUS and large decreases in RE for the south‐central CONUS. The increases in RE in the north‐central CONUS are explained by trends in climate, whereas the large decreases in RE in the south‐central CONUS likely are related to groundwater withdrawals from the Ogallala aquifer to support irrigated agriculture.  相似文献   

17.
Flood forecasts and warnings are intended to reduce flood‐related property damages and loss of human life. Considerable research has improved flood forecasting accuracy (e.g., more accurate prediction of the occurrence of flood events) and lead time. However, the delivery of improved forecast information alone is not necessarily sufficient to reduce flood damage and loss of life, as people have varying responses and reactions to flood warnings. This study develops an agent‐based modeling framework that evaluates the impacts of heterogeneity in human behaviors (i.e., variation in behaviors in response to flood warnings), as well as residential density, on the benefits of flood warnings. The framework is coupled with a traffic model to simulate evacuation processes within a road network under various flood warning scenarios. The results show the marginal benefit associated with providing better flood warnings is significantly constrained if people behave in a more risk‐tolerant manner, especially in high‐density residential areas. The results also show significant impacts of human behavioral heterogeneity on the benefits of flood warnings, and thus stress the importance of considering human behavioral heterogeneity in simulating flood warning‐response systems. Further study is suggested to more accurately model human responses and behavioral heterogeneity, as well as to include more attributes of residential areas to estimate and improve the benefits of flood warnings.  相似文献   

18.
Flooding and the susceptibility to flood damage inherent in all land uses constitute the flood hazard. Resolution of the hazard while properly recognizing flood plain environmental attributes within the context of overall community or area needs is the essence of comprehensive flood plain management. The traditional approach–flood control–has effected modification of only the flooding component of the hazard whether it be coastal or inland. Until recently Federal programs have overlooked the possibilities of modifying the susceptibility component, for which the major responsibility lies with non-Federal interests. Beginning with actions in the TVA area, the latter is now being strongly encouraged through Federal programs and actions notably the Flood Plain Management Services and Survey Programs of the Corps of Engineers, those stemming from Executive Order 11296, and those required for eligibility under the National Flood Insurance Act of 1968. Flood plain management objectives must be stated in planning, e.g., economic efficiency, reduction in threat to life and health, environmental improvement, and regional development, to permit proper evaluation of the optional means and approaches for achieving them.  相似文献   

19.
With growing urban populations and climate change, urban flooding is an important global issue, even in dryland regions. Flood risk assessments are usually used to identify vulnerable locations and populations, flooding experience patterns, or levels of concern about flooding, but rarely are all of these approaches combined. Furthermore, the social dynamics of flood concerns, exposure, and experience are underexplored. We combined geographic and survey data on household‐level measures of flood experience, concern, and exposure in Utah's urbanizing Wasatch Front. We asked: (1) Are socially vulnerable groups more likely to be exposed to flood risk? (2) How common are flooding experiences among urban residents, and how are these experiences related to sociodemographic characteristics and exposure? and (3) How concerned are urban residents about flooding, and does concern vary by exposure, flood experience, and sociodemographic characteristics? Although floodplain residents were more likely to be White and have higher incomes, respondents who were of a racial/ethnic minority, were older, had less education, and were living in floodplains were more likely to report flood experiences and concern about flooding. Flood risk management approaches need to address social as well as physical sources of vulnerability to floods and recognize social sources of variation in flood experiences and concern.  相似文献   

20.
Ahn, Jae Hyun and Hyun Il Choi, 2013. A New Flood Index for Use in Evaluation of Local Flood Severity: A Case Study of Small Ungauged Catchments in Korea. Journal of the American Water Resources Association (JAWRA) 49(1): 1‐14. DOI: 10.1111/jawr.12025 Abstract: The aim of this article is to develop a new index measuring the severity of floods in small ungauged catchments for initial local flood information by the regression analysis between the new flooding index and rainfall patterns. Although a rapid local flood caused by heavy storm in a short period of time is now one of common natural disasters worldwide, such a sudden and violent hydrologic event is difficult to forecast. As local flooding rises rapidly with little or no advance warning, the key to local flood forecasting is to quickly identify when and where local flooding above a threshold is likely to occur. The new flooding index to characterize local floods is measured by the three normalized relative severity factors for the flood magnitude ratio, the rising curve gradient, and the flooding duration time, quantifying characteristics of flood runoff hydrographs. The new flooding index implemented for the two selected small ungauged catchments in the Korean Peninsula shows a very high correlation with logarithm of the 2‐h maximum rainfall depth. This study proposes 30 mm of rainfall in a 2‐h period as a basin‐specific guidance of precaution for the incipient local flooding in the two study catchments. It is expected that the best‐fit regression equation between the new flooding index and a certain rainfall rate can provide preliminary observations, the flood threshold, and severity information, for use in a local flood alert system in small ungauged catchments. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号