首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

2.
Irrigated agriculture is a major economic contributor of the High Plains Region and it primarily relies on the High Plains Aquifer as a source of water. Over time, areas of the High Plains Aquifer have experienced drawdowns limiting its ability to supply sufficient water to sustain fully irrigated crop production. This among other reasons, including variable climatic factors and differences in state water policy, has resulted in some areas adopting and practicing deficit irrigation management. Considerable research has been conducted across the High Plains Aquifer region to identify locally appropriate deficit irrigation strategies. This review summarizes and discusses research conducted in Nebraska, Colorado, Kansas, and Texas, as well as highlights areas for future research. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

3.
Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r 2 = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400–500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.  相似文献   

4.
McMahon, Tyler G. and Mark Griffin Smith, 2012. The Arkansas Valley “Super Ditch”— An Analysis of Potential Economic Impacts. Journal of the American Water Resources Association (JAWRA) 00(0):000‐000. 1‐12. DOI: 10.1111/jawr.12005 Abstract: In Colorado’s Arkansas River basin, urban growth and harsh farming conditions have resulted in water transfers from agricultural to urban uses. Several studies have shown that these transfers have significant secondary economic impacts associated with the removal of irrigated land from production. In response, new methods of sharing water are being developed to allow water transfers that benefit both farm and urban economies, compared with previous permanent transfers that negatively impacted surrounding farm communities. One such project currently under development is the Arkansas Valley “Super Ditch,” which is a rotational crop fallowing plan based on long‐term water leasing designed to provide an annual supply of 25,000 acre‐feet of water (31.6 Mm3). This article analyzes the net benefits of implementing the “Super Ditch” for both the farmers and the surrounding community.  相似文献   

5.
ABSTRACT Irrigated land outproduces dryland agriculture, especially in the western United States. Many valuable crops could not be grown without irrigation. A paucity of yield data does not allow direct measurement of the contribution from irrigated crop agriculture, nor does it allow evaluation of the contributions from livestock which are dependent upon irrigated feed. Regression results indicate that 80 percent of Idaho farm income is associated with irrigation, and that 75 percent of the farm income in the 17 western states is associated with irrigation. For the United States as a whole, results indicate that 13.7 percent of the total cropland (irrigated land) produced 41.3 percent of all cash receipts from farming in 1978. If 14 percent of the land can produce 40 percent of the value of production, can 35 percent of our land produce all our food and fiber needs? Such an allegation has several implications in terms of the adequacy of our land and water resources. It also emphasizes the role of technology in future resource use and production.  相似文献   

6.
Wildman, Richard A., Jr. and Noelani A. Forde, 2012. Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading. Journal of the American Water Resources Association (JAWRA) 48(3): 411-422. DOI: 10.1111/j.1752-1688.2012.00665.x Abstract: The water of the Colorado River of the southwestern United States (U.S.) is presently used beyond its reliable supply, and the flow of this river is forecast to decrease significantly due to climate change. A recent interim report of the Colorado River Basin Water Supply and Demand Study is the first acknowledgment of these facts by U.S. federal water managers. In light of this new stance, we evaluate the current policy of adaptation to water shortages in the Colorado River Basin. We find that initial shortages will be borne only by the cities of Arizona and Nevada and farms in Arizona whereas the other Basin states have no incentive to reduce consumptive use. Furthermore, the development of a long-term plan is deferred until greater water scarcity exists. As a potential response to long-term water scarcity, we evaluate the viability of an interstate water market in the Colorado River Basin. We inform our analysis with newly available data from the Murray-Darling Basin of Australia, which has used interstate water trading to create vital flexibility during extreme aridity during recent years. We find that, despite substantial obstacles, an interstate water market is a compelling reform that could be used not only to adapt to increased water scarcity but also to preserve core elements of Colorado River Basin law.  相似文献   

7.
Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N(2)O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N(2)O emissions. Lowering the amount of N(2)O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO(3)(-) levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO(3)(-) levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.  相似文献   

8.
Harmful algal blooms (HABs) diminish the utility of reservoirs for drinking water supply, irrigation, recreation, and ecosystem service provision. HABs decrease water quality and are a significant health concern in surface water bodies. Near real-time monitoring of HABs in reservoirs and small water bodies is essential to understand the dynamics of turbidity and HAB formation. This study uses satellite imagery to remotely sense chlorophyll-a concentrations (chl-a), phycocyanin concentrations, and turbidity in two reservoirs, the Grand Lake O′ the Cherokees and Hudson Reservoir, OK, USA, to develop a tool for near real-time monitoring of HABs. Landsat-8 and Sentinel-2 imagery from 2013 to 2017 and from 2015 to 2020 were used to train and test three different models that include multiple regression, support vector regression (SVR), and random forest regression (RFR). Performance was assessed by comparing the three models to estimate chl-a, phycocyanin, and turbidity. The results showed that RFR achieved the best performance, with R2 values of 0.75, 0.82, and 0.79 for chl-a, turbidity, and phycocyanin, while multiple regression had R2 values of 0.29, 0.51, and 0.46 and SVR had R2 values of 0.58, 0.62, and 0.61 on the testing datasets, respectively. This paper examines the potential of the developed open-source satellite remote sensing tool for monitoring reservoirs in Oklahoma to assess spatial and temporal variations in surface water quality.  相似文献   

9.
Waite, Ian R., Jonathan G. Kennen, Jason T. May, Larry R. Brown, Thomas F. Cuffney, Kimberly A. Jones, and James L. Orlando, 2012. Comparison of Stream Invertebrate Response Models for Bioassessment Metrics. Journal of the American Water Resources Association (JAWRA) 48(3): 570-583. DOI: 10.1111/j.1752-1688.2011.00632.x Abstract: We aggregated invertebrate data from various sources to assemble data for modeling in two ecoregions in Oregon and one in California. Our goal was to compare the performance of models developed using multiple linear regression (MLR) techniques with models developed using three relatively new techniques: classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tolerance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O/E) as response variables and land use/land cover as explanatory variables. Responses were generally linear; therefore, there was little improvement to the MLR models when compared to models using CART and RF. In general, the four modeling techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each region. However, results from the BRT models showed significant improvement over the MLR models for each region; increases in R2 from 0.09 to 0.20. The O/E metric that was derived from models specifically calibrated for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O/E R2 values were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent a good alternative to MLR for modeling species distribution relative to environmental variables.  相似文献   

10.
Currently, there is no agreed upon method for estimating evapotranspiration (ET) across large regions such as the state of New Mexico. Remote sensing methods have potential for providing a solution, but require validation. A comparison between field‐scale ET measurements using a portable chamber ET measurement device and modeled ET using the remote sensing Regional Evapotranspiration Estimation Model (REEM) was performed where the model had not been previously evaluated. Data were collected during the growing season of 2015 in three irrigated agricultural valleys of northern New Mexico in agricultural and nonagricultural settings. No statistically significant difference was observed in agricultural datasets between means of measured (= 3.7 mm/day, SE = 0.31 mm/day) and modeled (= 4.0 mm/day, SE = 0.01 mm/day) daily ET; t(17) = ?1.50, = 0.15, α = 0.05. As there was no statistical difference observed between agricultural datasets, results support the use of REEM in irrigated agricultural areas of northern New Mexico. A statistically significant difference was observed in nonagricultural datasets between means of measured (= 1.7 mm/day, SE = 0.22 mm/day) and modeled (= 0.0 mm/day, SE = 0.00 mm/day) daily ET; t(9) = 1.79, = 5.7 × 10?6, α = 0.05. With additional calibrations and air temperature sensors placed outside of agricultural areas, REEM may be suitable for use in nonagricultural areas of northern New Mexico.  相似文献   

11.
Model‐estimated monthly water balance components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff (R)) for 146 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Colorado River Basin (CRB) are used to examine the temporal and spatial variability of the CRB water balance for water years 1901 through 2014 (a water year is the period from October 1 of one year through September 30 of the following year). Results indicate that the CRB can be divided into six subregions with similar temporal variability in monthly R. The water balance analyses indicated that approximately 75% of total water‐year R is generated by just one CRB subregion and that most of the R in the basin is derived from surplus (S) water generated during the months of October through April. Furthermore, the analyses show that temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the northwestern conterminous U.S. (CONUS) and positive atmospheric pressure anomalies over the southeastern CONUS. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the North Pacific Ocean into the CRB, particularly the Upper CRB. Additionally, the occurrence of extreme dry and wet periods in the CRB appears to be related to variability of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation.  相似文献   

12.
Light Detection and Ranging (LiDAR), is relatively inexpensive, provides high spatial resolution sampling at great accuracy, and can be used to generate surface terrain and land cover datasets for urban areas. These datasets are used to develop high‐resolution hydrologic models necessary to resolve complex drainage networks in urban areas. This work develops a five‐step algorithm to generate indicator fields for tree canopies, buildings, and artificial structures using Geographic Resources Analysis Support System (GRASS‐GIS), and a common computing language, Matrix Laboratory. The 54 km2 study area in Parker, Colorado consists of twenty‐four 1,500 × 1,500 m LiDAR subsets at 1 m resolution with varying degrees of urbanization. The algorithm correctly identifies 96% of the artificial structures within the study area; however, application success is dependent upon urban extent. Urban land use fractions below 0.2 experienced an increase in falsely identified building locations. ParFlow, a three‐dimensional, grid‐based hydrological model, uses these building and artificial structure indicator fields and digital elevation model for a hydrologic simulation. The simulation successfully develops the complex drainage network and simulates overland flow on the impervious surfaces (i.e., along the gutters and off rooftops) made possible through this spatial analysis process.  相似文献   

13.
Variation in drying material and their biological differences, coupled with heat supply method in different dryers, makes mathematical modeling of drying complicated. Attempt was made to simulate a drying process and to identify best suitable model out of six selected drying models, for drying of ginger slices in a solar-biomass integrated drying system designed and developed for spice drying. Moisture content data were converted into the moisture ratio (MR) expressions and curve fitting with drying time for the selected drying models was analyzed. Sigma Plot software was used for nonlinear regression to the data obtained during drying and for modeling of drying curves. The suitability of the models was evaluated in terms of statistical parameters such as coefficient of determination (R2), mean percentage error (P), and standard error estimate. Drying air temperature was in the range of 47–55°C and air velocity was between 1.0 and 1.3 m s?1. Ginger slices were dried from 88.13% to 7.65 ± 0.65% (wb) in 16 h. Trays were interchanged in a predetermined matrix sequence from 4 h onwards when moisture content was reduced to 60–70% (wb), for uniformity in drying. Highest value of R2 (0.997), lowest value of SEE (0.020), and P value < 0.0001 established Page model as the best suitable model for the developed drying system. The predicted MRs were in good agreement with the experimental values and the effective moisture diffusivity for ginger was found to be 2.97 × 10–7 m2 s?1.  相似文献   

14.
ABSTRACT: The lower reaches of the Arroyo Colorado have historically failed to meet their use under subsection 303(b) of the U.S. Clean Water Act due to fecal coliform bacteria and low dissolved oxygen (DO). Fish kills, especially at the tidal confluence at the Port of Harlingen, Texas, have been reported. Oxygen demand from sediment (SOD) for a river typically has two states‐diffusion limited SOD (SOD) and potential SOD (pSOD), expressed when sediment is resuspended through increased flow or other disturbances. The objective of this research was to measure SOD in the Arroyo Colorado River in situ, estimate pSOD ex situ, and evaluate the relationship between SOD and the depositional environment. We measured SOD and pSOD in the Arroyo Colorado River at up to eight sites over three sampling events. We identified the sample sites based on a modified Rosgen geomorphic index for streambed stabilization. Sites with high sediment deposition potential had high SOD. The average values of SOD between sites were 0.62 g/m2/day (standard deviation 0.38 g/m2/day) and ranged from 0.13 to 1.2 g/m2/day. Potential SOD values ranged from as low as 19.2 to as high as 2,779 g/m3 sediment/ day. Potential SOD can serve as an indicator of the possible impact of SOD from resuspended sediment in stream systems.  相似文献   

15.
Abstract: In this article, we describe a method for predicting floodplain locations and potential lateral channel migration across 82,900 km (491 km2 by bankfull area) of streams in the Columbia River basin. Predictions are based on channel confinement, channel slope, bankfull width, and bankfull depth derived from digital elevation and precipitation data. Half of the 367 km2 (47,900 km by length) of low‐gradient channels (≤ 4% channel slope) were classified as floodplain channels with a high likelihood of lateral channel migration (182 km2, 50%). Classification agreement between modeled and field‐measured floodplain confinement was 85% (κ = 0.46, p < 0.001) with the largest source of error being the misclassification of unconfined channels as confined (55% omission error). Classification agreement between predicted channel migration and lateral migration determined from aerial photographs was 76% (κ = 0.53, p < 0.001) with the largest source of error being the misclassification of laterally migrating channels as non‐migrating (35% omission error). On average, more salmon populations were associated with laterally migrating channels and floodplains than with confined or nonmigrating channels. These data are useful for many river basin planning applications, including identification of land use impacts to floodplain habitats and locations with restoration potential for listed salmonids or other species of concern.  相似文献   

16.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

17.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

18.
ABSTRACT: ERTS-1 satellite imagery has been evaluated as a means of providing useful watershed physiography information. From these data physiographic parameters such as drainage basin area and shape, drainage density, stream length and sinuosity, and the percentage of a watershed occupied by major land use types were obtained in three study areas. The study areas were: (1) Southwestern Wisconsin; (2) Eastern Colorado; and (3) portions of the Middle Atlantic States Using ERTS-1 imagery at 1:250,000 and 1:100,000 scales it was found that drainage basin area and shape and stream sinuosity were comparable (within 10%) in all study areas to physiographic measurements derived from conventional topographic maps at the same scales Land use information can be usefully extracted for watersheds as small as 30 mi2(78 km2) in area. Improved drainage network and density information is obtained from ERTS-1 imagery in dissected areas such as Southwestern Wisconsin, but in heavily vegetated areas (Middle Atlantic States) or areas with little physical relief (Eastern Colorado) low order streams are difficult to detect and the derived drainage densities are significantly smaller than those obtained from standard maps. It is concluded that ERTS-1 imagery can be employed to advantage in mean annual runoff prediction techniques and in providing or maintaining land use information used in the calibration and operation of watershed models.  相似文献   

19.
Conservation of groundwater resources is critical for maintaining the future productivity of irrigated land in the Ogallala Aquifer Region and beyond. This research explores motivations and behavior related to groundwater conservation among agricultural producers in the Colorado portion of the Republican River Basin, which is part of the Ogallala Aquifer. The empirical modeling uses data from a recently conducted survey to analyze how a common set of producer, farm, and resource characteristics influence groundwater values, concern for future groundwater availability, private conservation actions, and support for coordinated conservation efforts. We find two factors, producer age and land owner status, are consistently correlated with the key conservation‐related outcomes we evaluate. More generally, the results suggest considerable similarities in the characteristics that drive private conservation actions and support for coordinated conservation. This knowledge could be used to better target and incentivize future groundwater conservation efforts in the region. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

20.
In interior western North America, many riparian forests dominated by cottonwood and willow are failing to reproduce downstream of dams. We tested the hypothesis that establishment is now prevented by absence of the bare, moist substrate formerly provided by floods and channel movement. Along Boulder Creek, a dammed stream in the Colorado plains, we tested the effects of disturbance (sod removal), irrigation, and addition of seed on the establishment of seedings of plains cottonwood (Populus deltoides subsp.monilifera) and peachleaf willow (Salix amygdaloides). In unirrigated, undisturbed plots, mean cottonwood density was 0.03 seedlings/m2. Irrigation or disturbance alone produced mean cottonwood densities of 0.39 and 0.75 seedlings/m2. Plots that were both irrigated and disturbed produced a mean cottonwood density of 10.3 seedlings/m2. The effects of irrigation and disturbance on cottonwood establishment were significant (P<0.005); added seed had no significant effect (P=0.78). The few cottonwood seedlings in unirrigated plots were in low positions susceptible to scour by future moderate flows. We conclude that cottonwood establishment along Boulder Creek is limited by the scarcity of bare, moist sites safe from future scour. Establishment of peachleaf willow was significantly affected only by disturbance; daily sprinkler irrigation did not provide sufficient moisture to increase survival of this species. Our results demonstrate the feasibility of restoring plains cottonwood forests using natural seedfall, even where only widely scattered adult trees are present. Because use of natural seedfall conserves the genetic makeup of the local population, this method may be preferable to the use of imported cuttings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号