首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent decades, the energy demand for transport and industrial sector has increased considerably. Fossil fuels which were the major fuel source for decades are no more sustainable. Biodiesel is an efficient alternative compared to depleting fossil fuels. The prospect of biodiesel as the best alternative fuel is a reliable source compared to depleting fossil fuels. Hydrogen is also considered as an attractive alternative fuel producing low emission with improved engine performance. This paper investigates the performance and emission characteristics of a single cylinder compression ignition engine using hydrogen as an inducted fuel and biodiesel, aka Pongamia pinnata as injected fuel. The experiments are conducted for different quantities of hydrogen induction through the intake manifold in order to improve the performance of the engine. The performance parameters such as brake thermal efficiency, brake specific fuel consumption, exhaust temperature and emission quantities like HC, NOX, CO, CO2 of biodiesel fueled CI engine with variable mass flow rate of hydrogen are investigated. The performances of biodiesel combined with hydrogen at varying mass flow rates are also compared. The 10 LPM hydrogen induction with biodiesel provided 0.33% increase of brake thermal efficiency compared with diesel and increase of 3.24% to biodiesel at 80% loading conditions. The emission of HC decreased by 13 ppm, CO decreased by 0.02% by volume and CO2 decreased by 3.8% by volume for biodiesel with induction of hydrogen at 10 LPM to that of neat biodiesel for 80% load conditions.  相似文献   

2.
This work examines the effect of butanol (higher alcohol) on the emission pattern of neat neem oil biodiesel (NBD100) fueled diesel engine. Single-cylinder, 4-stroke, research diesel engine was employed to conduct the trial. Blends comprising the mixture of biodiesel and higher alcohol were prepared by employing an ultrasonic agitator. Four test fuels such as neat neem oil biodiesel, diesel, and two blends of higher alcohol/neem oil biodiesel: 10% and 20% (by volume). Experimental result showed that increasing alcohol content to biodiesel brought down the various emissions such as Smoke, NOx, HC, and CO by 6.8%, 10.4%, 8.6%, and 5.9%, respectively, at all loads. It was also concluded from the trail that a 20% higher alcohol/neem oil biodiesel blends show the promising signs in reducing all the emissions associated with biodiesel fuelled diesel engine.  相似文献   

3.
Biofuel blends produced from Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) oil were evaluated for their combustion properties. Two kinds of blends (regular diesel with Jatropha and Karanja oil) were prepared at 20% volume to the diesel and tested as alternative fuels in single cylinder (vertical), water-cooled, direct injection diesel engine at the rated speed of 1500 rpm. The performance of the engine in terms of thermal efficiency at full load for diesel was 30%. For Jatropha and Karanja biodiesel blends, the thermal efficiencies were 29.0% and 28.6%, respectively. The maximum cylinder pressure and ignition delay for biodiesel fuel blends are very close to that of regular diesel. Prolonged combustion was observed for Karanja oil blend in comparison to Jatropha oil blend. The combustion pattern also reveals the slow burning characteristics of vegetable oils and this study indicates that the blended biofuels have combustion characteristics that are similar to regular diesel fuels.  相似文献   

4.
The present experimental work investigates the use of ethyne gas in biodiesel-fueled diesel engine at different flow rate of 1, 2, and 3 L/min and is compared with diesel operation. This work is aimed to examine the outcome of ethyne gas by dual-fuel operation on emission characteristics of neat biodiesel-fueled stationary diesel engine. The oil derived from mustard seeds are employed as a source for biodiesel. The work was carried out at 2100 rpm (speed) and at an optimal compression ratio of 17. Based on the outcome of this investigation, the maximum reduction in hydrocarbon (25.1%), carbon monoxide (17.24%), and smoke emission (24.8%) was observed for biodiesel–ethyne at 3 L/min than the neat biodiesel. However, NOx emissions were found to be 15.8% higher for ethyne–biodiesel fueling at 3 L/min owing to increase in combustion gas temperature than neat biodiesel.  相似文献   

5.
This study details the effect of the Di-Methyl-Ether(DME) as a cetane improver on neat cashew nut shell biodiesel (CBD100) to assess the emission and performance engine characteristics. Four fuels, namely, diesel, biodiesel (Cashew nut shell Methyl Ester), a blend of CBD100-10% and 20% by volume of DME (CBD90DME10and CBD80DME20) are prepared and tested on a stationary research diesel engine. The experimental parameters for CBD80DME20 showed a 1.6% increase in thermal efficiency thereby reducing 4.1% of fuel consumption than the neat biodiesel at peak conditions. Experimental result exposed that 20% of DME reduces 3.4% CO, 4.2% HC and 8.8% NOx and 8.4% smoke emissions of CBD100. Based on the outcome of this work, it is clear that CBD80DME20 shall be employed as a substitute fuel for diesel engine.

Abbreviations: CI: Compression ignition; CBD100: Cashew nut shell Bio-diesel; DME: Di-methyl ether; CO: Carbon monoxide; BTE: Brake thermal efficiency; BSFC: Brake specific fuel consumption; CBD100: 100% Biodiesel; CBD90DME10: 90% biodiesel + 10% di-methyl-ether; CBD80DME20: 80% biodiesel + 20% di-methyl-ether; HC: Hydrocarbon; NOx: Oxides of nitrogen.  相似文献   


6.
Worldwide energy demand has been growing steadily during the past five decades and most experts believe that this trend will continue to rise. The amount of emitted harmful emission gases increases in parallel with increasing energy consumption. This increase has forced many countries to take various precautions, and various restrictions on emitted emissions have been carried. In this study, effects of addition of oxygen containing nanoparticle additives to biodiesel on fuel properties and effects on diesel engine performance and exhaust emissions were investigated. Two different nanoparticle additives, namely MgO and SiO2, were added to biodiesel at the addition dosage of 25 and 50 ppm. Fuel properties, engine performance, and exhaust emission characteristics of obtained modified fuels were examined. As a result of this study, engine emission values NOx and CO were decreased and engine performance values slightly increased with the addition of nanoparticle additives.  相似文献   

7.
Biodiesel is a promising fuel for compression ignition engines instead of diesel fuel. Due to the depletion of diesel fuel, an alternative fuel can be used in an engine. The experiments were conducted on a four-stroke, single cylinder CI engine. In this present investigation, an attempt has been made to study the influence of injection pressure (IP) and injection timing (IT) on the performance and emission characteristics of diesel engines by using mixed biodiesel (Thevetia peruviana, Jatropha, Pongamia, and Azadirachta indica). The injection pressure is varied from 200 to 230 bar and the injection timing is varied from 23 to 29° bTDC at an increment of 10 bar and 2° bTDC, respectively, and the results were compared with diesel. From this study, the results showed that the brake thermal efficiency (BTE) was increased by 2.4% with an increase in injection pressure and 1.5% with an increase in the injection timing for the maximum load, but lesser than diesel. Furthermore, a reduction of 5.08% of brake specific fuel consumption (BSFC) has been noticed for the rise in IP and IT with loads but higher than diesel. The reduction was 34.17%, 53.85%, and 29.7% and 29.17%, 53.85%, and 21.95% of hydrocarbons (HC), carbon monoxide (CO), and smoke emissions, respectively, at 230 bar injection pressure and at 27° bTDC injection timing. Also, a significant increase in nitrogen oxides (NOx) and carbon dioxide (CO2) emissions at the maximum load was observed by increasing the injection pressure and injection timing.  相似文献   

8.
ABSTRACT

The main challenge of utilizing ethanol in diesel engines in blending mode is the phase separation issue. Therefore, an attempt has been performed to enhance the stability feature of ethanol/Jatropha biodiesel (JME) blends by using n-butanol as co-solvent. The 10% by volume of n-butanol is added to the mixtures of 10% and 20% ethanol and 70% and 80% JME, which is denoted as JME10Bu10E and JME10Bu20E, respectively. The phase stability of the evaluated fuels is examined employing visual approach and Thermogravimetric analysis. These methods confirm that there is no phase separation for more than 2 months under ambient conditions. Then, the combustion and emission features are investigated utilizing a diesel engine run with different loads and constant speed. The findings demonstrate that the pmax. and HRR are increased by adding ethanol. The ignition delay is extended with the addition of ethanol while the combustion period is almost the same. The bsfc is decreased by adding ethanol compared to JME fuel. The CO, UHC, and NOx formations are reduced markedly by 40%, 40%, and 40%, respectively, with adding ethanol. Finally, using n-butanol and JME as co-solvents with ethanol supports the growth of renewable energy in the CI engine.  相似文献   

9.
Recent strategies for simultaneously reducing NOx and soot emissions have focused on achieving nearly premixed, low-temperature combustion (LTC) in diesel engines. A promising approach in this regard is to vary fuel reactivity in order to control the ignition delay and optimize the level of premixing and reduce emissions. The present study examines such a strategy by performing 3-D simulations in a single-cylinder of a diesel engine. Simulations employ the state-of-the-art two-phase models and a validated semi-detailed reaction mechanism. The fuel reactivity is varied by using a blend of n-heptane and iso-octane, which represent surrogates for gasoline and diesel fuels, respectively. Results indicate that the fuel reactivity strongly influences ignition delay and combustion phasing, whereas the start of injection (SOI) affects combustion phasing. As fuel reactivity is reduced, the ignition delay is increased and the combustion phasing is retarded. The longer ignition delay provides additional time for mixing, and reduces equivalence ratio stratification. Consequently, the premixed combustion is enhanced relative to diffusion combustion, and thus the soot emission is reduced. NOx emission is also reduced due to reduced diffusion combustion and lower peak temperatures caused by delayed combustion phasing. An operability range is observed in terms of fuel reactivity and SOI, beyond which the mixture may not be sufficiently well mixed, or compression ignited. The study demonstrates the possibility of finding an optimum range of fuel reactivity, SOI, and EGR for significantly reducing engine out emissions for a given load and speed.  相似文献   

10.
NOx emission is produced during combustion of fuels at high temperature. Excessive release of NOx causes several effects on living organisms and environment. In this work, the efforts to reduce NOx emission by developing electrochemically activated cells (EACs) for a diesel engine fuelled with diesel and biodiesel fuel are discussed. EAC technique is vital after treatment technology attempted in this work to simultaneous control of NOx, HC, and PM emissions. In this method, two types of EACs were developed. The CuO–YSZ electrolyte and CuO–YSZ electrolyte with BaO coating were developed and tested with diesel and biodiesel exhaust. Compared with diesel fuel, use of biodiesel fuel increased NOx emission by 11% and PM emission was slightly reduced with biodiesel, which was due to the presence of fuel bond oxygen content in biodiesel. The investigation has demonstrated low-temperature activation of the EACs at 250–350°C which was due to the addition of CuO to YSZ. In this work, maximum NOx reduction was achieved for CuO–YSZ cells with BaO NOx storage and the simultaneous control of HC and PM emission also was observed in this technique. NOx reduction by EAC is a vital technique and can be retrofitted with any diesel engine for emission reduction.  相似文献   

11.
ABSTRACT

This article aims to study the influence of the addition of graphene oxide nanoparticles (GO) to diesel/higher alcohols blends on the combustion, emission, and exergy parameters of a CI engine under various engine loads. The higher alcohols mainly n-butanol, n-heptanol, and n-octanol are blended with diesel at a volume fraction of 50%. Then, the 25 and 50 mg/L concentrations of GO are dispersed into diesel/higher alcohols blends using an ultrasonicator. The GO structures are examined using TEM, TGA, XRD and FTIR. The findings show that there is a reduction in pmax. and HRR when adding higher alcohols with diesel fuel. Regarding engine emission, there is a significant improvement in emissions formation with adding higher alcohols. The addition of GO into diesel/higher alcohols blends improves the brake thermal efficiency by 15%. Moreover, the pmax. and HRR are both enhanced by 4%. The CO, UHC and smoke formation are reduced considerably by 40%, 50 and 20%, respectively, while NOx level is increased by 30% with adding GO. Finally, adding high percentages of n-butanol, n-heptanol, and n-octanol with diesel fuel with the presence of GO has the potential to achieve ultra-low CO, UHC, and smoke formation meanwhile keeping high thermal efficiency level.  相似文献   

12.
Compared to conventional diesel fuels, biodiesels normally have lower smoke and particulate matter, while higher nitrogen oxides (NOX) emissions. In our study, an attempt was made to reduce the NOX emissions of biodiesels by increasing the cetane numbers (CNs). Three kinds of biodiesels with extremely high CNs (70.1, 76.9, 80.9, respectively) were developed. Their main physical and chemical properties were tested. With a two-cylinder direct injection diesel engine, their emission performances were experimentally investigated. The results indicate that, CN, freezing point, as well as viscosity of biodiesels are linearly increased with the increase of carbon number. The NOX emission for biodiesels with high CNs is lower than that of conventional diesel fuels. High CN promotes smoke formation as well while lower smoke emissions are still obtained for biodiesels when certain oxygen contents are present. That is, the smoke/NOX tradeoff is broken. Besides, as fuel CN is elevated, NOX for biodiesels decreases but smoke and carbon monoxide emissions are increased.  相似文献   

13.
The current experimental study is aimed to analyze the influence of single-walled Carbon Nano Tubes (CNT) on the emission characteristics of neem biodiesel-fueled (NBD-fueled) diesel engine and the results compared with conventional diesel. Experiments were conducted in a single-cylinder, 4-stroke, diesel engine with an eddy current dynamometer at a constant speed of 1500 rpm. Two samples of CNT are characterized and dispersed into 100% of the NBD in a mass fraction of 50 and 100 ppm using ultrasonicator, and the physicochemical properties were measured. Experimental results indicated that by adding CNT nanoparticles in NBD reduces its NOx, HC, CO, and smoke emission by 9.2%, 6.7%, 5.9%, and 7.8%, respectively, at all load conditions.  相似文献   

14.
A cooperative fuel research (CFR) engine was modified and instrumented in order to control operating conditions and to measure engine parameters and in-cylinder pressure diagrams. Aiming at the comparison of different alternative fuels, an experimental procedure was defined, including cetane number (CN) evaluation and the definition of engine operating quantities in different working points, for fixed levels of compression ratio (CR) and injection advance. An investigation was made considering several blends of methyl-esters of rapeseed oil (RME) and of a mix of vegetable oils (VOME) with conventional diesel oil. The defined experimental procedure was applied to assess CN, engine brake thermal efficiency (bte) and exhaust emissions. Results show that the biodiesel content has a positive influence on soot emissions, with strong reduction, while thermal efficiency and NOX emissions are negatively affected, which can be justified taking into account fuel properties and changes in combustion process. As observed outcomes are generally in line with those presented in literature, the facility proved to be a suitable tool for basic investigations on alternative fuels to be used in specific applications.  相似文献   

15.
An attempt has been made to produce stable water–diesel emulsion with optimal formulation and process parameters and to evaluate the performance and emission characteristics of diesel engine using this stable water–diesel emulsion. A total of 54 samples were prepared with varying water/diesel ratio, surfactant amount and stirring speed and water separation was recorded after 24 and 48 hr of emulsification. The recorded data were used in artificial neural network (ANN)-particle swarm optimization (PSO) technique to find the optimal parameters to produce water–diesel emulsion for engine testing. The predicted optimal parameters were found as 20% water to diesel ratio, 0.9% surfactant and 2200 rpm of stirrer for a water separation of 14.33% in one day with a variation of 6.54% against the actual value of water separation. Water–diesel emulsion fuel exhibited similar fuel properties as base fuel. The peak cylinder gas pressure, peak pressure rise rate and peak heat release rate for water–diesel were found higher as compared to diesel at medium to full engine loads. The improved air-fuel mixing in water–diesel emulsion enhanced brake thermal efficiency (BTE) of engine. The absorption of heat by water droplets present in water–diesel emulsion led to reduced exhaust gas temperature (EGT). With water–diesel emulsion fuel, the mean carbon monoxide (CO), unburned hydrocarbon and oxides of nitrogen (NOx) emissions reduced by 8.80, 39.60, and 26.11%, respectively as compared to diesel.  相似文献   

16.
This work aimed to prove the effects of adding different proportions of ethanol with diesel (DE) and ethanol–water mixture with diesel (DEW) in a single-cylinder diesel engine on the performance, emissions, and combustion parameters. The blends were stabilized by tetra methyl ammonium bromide (TMAB) as the additive. The study was conducted at two operating conditions initially on a normal diesel engine and in the second case the engine piston, valves, and cylinder head coated with zirconia (ZrO2) alumina (Al2O3). The results showed that the addition of 10% ethanol with diesel performed almost equivalent to neat diesel with 29.2% BTE and a 17.7% decrease in smoke and an 11.4% increase in NOx emission at peak load compared to that of the base fuel. Modified engines with thermal barrier coating (TBC) performed superior to normal engines with 4% and 5.5% increase in BTE, respectively, for DE- and DEW-type fuels with reduced exhaust emissions. A 5% addition of water with diesel–ethanol blends favors a higher proportion of ethanol to be employed in diesel engines.  相似文献   

17.
The paper concerns the comparative analysis of combustion characteristics of different alternative fuels such as Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK), cryogenic methane, bioethanol, biomethanol, biobutanol, dimethyl ether, biodiesel and conventional aviation kerosene Jet-A as well as analysis of emissions of NOx, CO, CO2, H2O, HNOy (y = 2,3) and organics for gas turbine engine operating on these fuels. The analysis has shown that the usage of all considered alternative fuels results in the increase of H2O emission, compared to kerosene-fueled combustor, and, as consequence, in the growth of water vapor supersaturation that can increase the rate of the H2O vapor condensation and enhance the formation of contrails and cirrus clouds in the atmosphere. The usage of all considered alternative fuels except FT-SPK, cryogenic methane and dimethyl can increase the CO2 emission compared to using of kerosene. Emission of N-containing species can be reduced upon the usage of considered alternative fuels, except dimethyl ether, for which one can expect the increase in the emissions of HNO2 and HNO3 approximately by 10%. The emission of CO decreases for all fuels except biodiesel. The major decrease can be achieved upon the replacement of kerosene to bioethanol.  相似文献   

18.
In this study, the rice bran oil (RBO) has been converted into methyl ester with an aid of transesterification reaction. Chemically, transesterification means conversion of triglyceride molecule or a complex fatty acid into alcohol and ester by removing the glycerin and neutralizing the free fatty acids. The B20 blend samples [80% diesel + 20% biodiesel] were prepared for each methyl ester obtained from RBO and then the cerium oxide (CeO2) nanoparticles were added to the each B20 blend samples at a dosage of 50 ppm and 100 ppm with an aid of ultrasonicator. Moreover, in the absence of any engine modifications, the performance and emission characteristics of those blend samples have been investigated from the experimentally measured values such as density, viscosity, cloud point, pour point, and calorific value while the engine performance was also analyzed through the parameters like exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), exhaust emission of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx). The experimental results reveal that the use of CeO2 blended biodiesel in diesel engine has exhibited good improvement in performance characteristic and reduction in exhaust emissions.  相似文献   

19.
The combustion of hydrocarbon (HC) fuels in internal combustion (IC) engines is modified by the presence of a few parts per million of megadalton molecular weight elastomers. The viscoelasticity imparted provides: reduced fuel vaporization, lesser back pressure, larger average droplet sizes, and lower combustion chamber temperatures. These effects result in: a reduction of emissions of HC, CO and NOx of more than 70%, a substantial decrease in the number of particulates from diesel engines, a drop in combustion temperatures of more than 30vv°C, increases in engine power of more than 10%, an improved fuel octane rating, and economies of fuel consumption of more than 20%. The results are magnified during transitions, especially in the lower gears, used more often in urban traffic, where normal fuels emit more pollutants. These effects have a positive public health impact due to reductions in ozone, acid rain, particulates and partially oxidized HC.  相似文献   

20.
The increasing demand on energy due to population growth and rising of living standards has led to considerable use of fossil fuels which has in turn, had an adverse impact on environmental pollution and depletion of fossil fuels in Internal Combustion (IC) engine sector. Alternative fuel blend evaluation in IC engine fuel technologies is a very important strategic decision involving decisions balancing within a number of criteria and opinions from different decision maker of IC engine experts. The selection of appropriate source of biodiesel and proper blending of biodiesel plays a major role in alternate energy production. This paper describes an application of hybrid Multi Criteria Decision Making (MCDM) technique for the selection of optimum biodiesel blend in the IC engine. The proposed model, Analytical Network Process (ANP) is integrated with Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) to evaluate the optimum blend. Here the ANP is used to determine the relative weights of the criteria, whereas TOPSIS is used for obtaining the final ranking of alternative blends. An efficient pair-wise comparison process and ranking of alternatives can be achieved for optimum blend selection through the integration of ANP and TOPSIS. The obtained preference order for the blends are as B20 > B40 > Diesel > B60 > B80 > B100. This paper highlights a new insight into MCDM techniques to evaluate the best fuel blend for the decision makers such as engine manufactures and R&D engineers to meet the fuel economy and emission norms to empower the green revolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号