首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial river rehabilitation efforts along the North Fork Gunnison River in Colorado focused on the use of in-stream structures and channel stabilization to create a single-thread channel with pools along a braided river. These efforts were based on the assumption that the river’s braided planform results primarily from land use during the past century. In order to establish a context for further rehabilitation, we evaluated the possibility that the river might be braided as a result of processes independent of land use. We estimated volume, grain-size distribution, and lithology of sediment sources along the river corridor and evaluated the planform stability of the river during the past century using historical sources, aerial photographs covering 1939–1997, and comparison of bankfull discharge and gradient in the study area to values published for braided and meandering rivers. Our results indicate that the North Fork Gunnison River has been primarily braided in its lower reaches during the past few hundred years, although the channel planform tends toward a single-thread channel during decades of lower precipitation and discharge. Although land use is not the primary cause of braiding along the North Fork Gunnison River, it has decreased channel stability, and rehabilitation efforts should be designed to reduce these effects. Our results illustrate the importance of planning river rehabilitation measures within a historical context that accounts for both catchment-scale and reach-scale controls on channel processes and planform.  相似文献   

2.
Geomorphic change from extreme events in large managed rivers has implications for river management. A steady‐state, quasi‐three‐dimensional hydrodynamic model was applied to a 29‐km reach of the Missouri River using 2011 flood data. Model results for an extreme flow (500‐year recurrence interval [RI]) and an elevated managed flow (75‐year RI) were used to assess sediment mobility through examination of the spatial distribution of boundary or bed shear stress (τb) and longitudinal patterns of average τb, velocity, and kurtosis of τb. Kurtosis of τb was used as an indicator of planform channel complexity and can be applied to other river systems. From differences in longitudinal patterns of sediment mobility for the two flows we can infer: (1) under extreme flow, the channel behaves as a single‐thread channel controlled primarily by flow, which enhances the meander pattern; (2) under elevated managed flows, the channel behaves as multithread channel controlled by the interaction of flow with bed and channel topography, resulting in a more complex channel; and (3) for both flows, the model reach lacks a consistent pattern of deposition or erosion, which indicates migration of areas of erosion and deposition within the reach. Despite caveats and limitations, the analysis provides useful information about geomorphic change under extreme flow and potential implications for river management. Although a 500‐year RI is rare, extreme hydrologic events such as this are predicted to increase in frequency.  相似文献   

3.
Phillips, Jonathan D., 2010. Relative Importance of Intrinsic, Extrinsic, and Anthropic Factors in the Geomorphic Zonation of the Trinity River, Texas. Journal of the American Water Resources Association (JAWRA) 46(4): 807-823. DOI: 10.1111/j.1752-1688.2010.00457.x Abstract: The Trinity River, Texas, was characterized according to its geologic framework, valley width and confinement, slope, sinuosity, channel-floodplain connectivity, and flow regime, leading to the identification of 18 hinge points along the 638 km study area where major transitions in two or more criteria occur. These, and effects of human agency, avulsions, and sea level rise, delineate 21 river styles or zones. Each zone was evaluated with respect to dominant factors determining its geomorphological characteristics: geology/lithology, tectonics, Holocene sea level rise, meandering, cutoffs and other lateral channel changes, avulsions, valley constrictions by alluvial terraces, and paleomeander depressions. Direct human influences (a large impoundment and water withdrawals) are also evident. Entropy of the relationships between these controls and the geomorphological zones shows that all the controls are significant, and each accounts for 4-15% of the total entropy. Geologic controls, lateral channel changes, and constriction by terraces are the three most influential controls, illustrating that controls on river morphology include extrinsic boundary conditions, active process-form interrelationships, and inherited features. Extrinsic and intrinsic controls each account for about a third of the entropy, but the latter includes antecedent features as well as active channel dynamics, underscoring the importance of historical contingency even in alluvial rivers.  相似文献   

4.
ABSTRACT: Periodic surveys of the upper Mississippi River since 1866 and a discharge record of nearly equal length provided an opportunity to learn more about the magnitudes and rates of geomorphic processes at work in large stream systems. Furthermore, geomorphic and hydrologic adjustments could be evaluated in relation to watershed land use changes, small‐scale climate fluctuations, and considerable modifications to the channel and floodplain during the period of record. The present study uses GIS mapping to quantitatively compare historical changes in mapped land and water phenomena in the upper Mississippi River Pool 10, located along southwest Wisconsin's border. Modest channel widening and decreases in island area throughout the study reach during the last century are detectable. Flood magnitudes and frequencies also have varied during this time, and stages and low flow discharges have increased since the 1940s. The latter hydrologic change appears to be closely associated with the reach's geomorphic adjustments. Results are representative of a valley reach where a major tributary contributes a large sand bedload, forming an alluvial fan of considerable size in the floodplain.  相似文献   

5.
Past research on fluvial dynamics at the confluence of two alluvial rivers has mainly focused on downstream flow structure and bed scoring, often using laboratory experiments and numerical modeling. Little is investigated about yearly and episodic dynamics of confluence mouth bars that can affect downstream morphology using field measurements. In this study, we analyzed the migration of a confluence mouth bar of two free meandering alluvial rivers, the Amite and Comite Rivers in coastal Louisiana, USA from 2002 to 2017. Remote sensing images were utilized to investigate the decade‐long morphologic changes. To assess episodic dynamics, we employed terrestrial laser scanning measurements to acquire high‐accuracy digital elevation models at the confluence before and after three floods in 2017. Our study found that the Amite‐Comite confluence mouth bar migrated downstream 55 m in the past 15 years, and its angle reduced by 55° from 100° to 45°. The fast migration was a result of sediment deposition and channel deformation around the confluence mainly during the years when the tributary‐to‐main channel discharge was lower (<0.25). The study further reveals that a single moderate flood could strongly affect the mouth bar, as shown by an increase of the projected surface area by 114% and an increase of volume of the confluence mouth bar by 68%.  相似文献   

6.
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation.  相似文献   

7.
Hawley, Robert J., Brian P. Bledsoe, Eric D. Stein, and Brian E. Haines, 2012. Channel Evolution Model of Semiarid Stream Response to Urban‐Induced Hydromodification. Journal of the American Water Resources Association (JAWRA) 48(4): 722‐744. DOI: 10.1111/j.1752‐1688.2012.00645.x Abstract: We present a novel channel evolution model (CEM) that qualitatively describes morphologic responses of semiarid channels to altered hydrologic and sediment regimes associated with urbanization (hydromodification). The CEM is based on southern California data from 83 detailed channel surveys, hundreds of synoptic surveys, and historical analyses of aerial photographs along 14 reaches. Channel evolution sometimes follows the well‐known sequence described by Schumm et al. (Incised Channels: Morphology, Dynamics, and Control, Water Resources Publications, Littleton, Colorado, 1984) for incising, single‐thread channels; however, departures from this sequence are common and include transitions of single thread to braided evolutionary endpoints, as opposed to a return to quasi‐equilibrium single‐thread planform. Thresholds and risk factors associated with observed channel response are also presented. In particular, distance to grade control and network position emerged as key controls on channel response trajectory. The CEM and quantitative extensions provide managers with a framework for understanding channel responses and rehabilitation alternatives, and may be transferable to other semiarid settings. It also offers insights regarding channel susceptibility to hydromodification, highlights key boundary conditions for high‐risk channels, and underscores critical knowledge gaps in predicting the complex, discontinuous response trajectories that are highly prevalent in urbanized watersheds.  相似文献   

8.
This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.  相似文献   

9.
ABSTRACT: The RIVMOD hydrodynamic model was used to route upstream flows through a 115 km section of the Carson River and Lahontan Reservoir, Nevada. RIVMOD results will later be used to predict sediment movement and ultimately to determine mercury transport within the river/reservoir system. Significant modifications to the model computer code were necessary to represent the narrow, steeply sloping rectangular channel and relatively shallow sloping floodplain of the Carson River and its confluence with the Lahontan Reservoir. These changes include expansion of the continuity and momentum equations to account for rapidly changing channel widths along with the characterization of a complex cross-sectional shape. This modified version of the RIVMOD model can handle shallower side slopes and much more severe flood flow simulations than the original version. A 0.25 km spatial increment was required in the zone of confluence between the river and reservoir. Model predictions show excellent agreement with observed downstream flow and reservoir stage for the entire 1986 water year, which includes one of the most severe flood events of recent record. (KEY TERMS: hydraulics; modeling; simulation; surface water hydrology.)  相似文献   

10.
The South Saskatchewan River Basin is one of Canada's most threatened watersheds, with water supplies in most subbasins over‐allocated. In 2013, stakeholders representing irrigation districts, the environment, and municipalities collaborated with researchers and consultants to explore opportunities to improve the resiliency of the management of the Oldman and South Saskatchewan River subbasins. Streamflow scenarios for 2025‐2054 were constructed by the novel approach of regressing historical river flows against indices of large‐scale ocean‐atmosphere climate oscillations to derive statistical streamflow models, which were then run using projected climate indices from global climate models. The impacts of some of the most extreme scenarios were simulated using the hydrologic mass‐balance model Operational Analysis and Simulation of Integrated Systems (OASIS). Based on stakeholder observations, the project participants proposed and evaluated potential risk management and adaption strategies, e.g., modifying existing infrastructure, building new infrastructure, changing operations to supplement environmental flows, reducing demand, and sharing supply. The OASIS model was applied interactively at live modeling sessions with stakeholders to explore practical adaptation strategies. Our results, which serve as recommendations for policy makers, showed that forecast‐based rationing together with new expanded storage could dramatically reduce water shortages.  相似文献   

11.
We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.  相似文献   

12.
Understanding how hydraulic factors control alluvial river meander migration can help resource managers evaluate the long-term effects of floodplain management and bank stabilization measures. Using a numerical model based on the mechanics of flow and sediment transport in curved river channels, we predict 50 years of channel migration and suggest the planning and ecological implications of that migration for a 6.4-km reach (river miles 218–222) of the Sacramento River near the Woodson Bridge State Recreation Area, California, USA. Using four different channel management scenarios, our channel migration simulations suggest that: (1) channel stabilization alters the future channel planform locally and downstream from the stabilization; (2) rock revetment currently on the bank upstream from the Woodson Bridge recreation area causes more erosion of the channel bank at the recreation area than if the revetment were not present; (3) relocating the channel to the west and allowing subsequent unconstrained river migration relieves the erosion pressure in the Woodson Bridge area; (4) the subsequent migration reworks (erodes along one river bank and replaces new floodplain along the other) 26.5 ha of land; and (5) the river will rework between 8.5 and 48.5 ha of land in the study reach (over the course of 50 years), depending on the bank stabilization plan used. The reworking of floodplain lands is an important riparian ecosystem function that maintains habitat heterogeneity, an essential factor for the long-term survival of several threatened and endangered animal species in the Sacramento River area.  相似文献   

13.
A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models — Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport — to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT‐HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.  相似文献   

14.
A conceptual model of the morphological development of the riparian margins of newly cut river channels is presented, suggesting early feedbacks between vegetation growth and bank form. To test the model, observations of long and cross profiles, bank sediment and seed deposition, and bank vegetation development were collected over the first 2 years of river flows through a reach of the River Cole, West Midlands, UK. The newly created channel had a sinuous planform and varying asymmetric trapezoidal cross section in sympathy with the planform. No imposed bedforms or bank reseeding were included in the design. Over the 2 years, development of bedforms was rapid, with bed sediment sorting and bank profile adjustment occurring more steadily and progressively. Six classes of bank profile were identified by the end of the study period, illustrating close associations with sediment aggradation, vegetation colonization, and growth patterns. Vegetation colonization of the banks was seeded predominantly from local sources during the summer and from hydrochory (transport by the river) during the winter. Colonizing vegetation on the riverbanks appeared to act as a significant propagule source by the second summer and as an increasingly important roughness element, trapping both propagules and sediment, within the second year and providing early feedback into bank evolution. As a result, the time required for riparian margin development in the conceptual model was found to be considerably longer than observed in the study river. In addition, the role of surface wash/bank failure in modifying the bank profile and transporting seeds onto the upper bank face during the first year of bank development was found to be important in initiating rapid bank vegetation colonization and surface stabilization. This set of processes had not been incorporated in the initial conceptual model. In relation to channel restoration, this research illustrates that in small temperate rivers of modest energy the provision of an initial, sinuous corridor is sufficient to induce rapid development of fluvial features and vegetation cover without the need to construct bed forms or to seed the banks.  相似文献   

15.
Abstract: Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo‐referenced attributes are uncommon over relevant spatial extents. Field inventories provide high‐quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so cover relatively small areas. Recent availability of regional digital data and Geographic Information Systems software has advanced capabilities to delineate stream networks and estimate coarse‐resolution hydrogeomorphic attributes (e.g., gradient). A spatially comprehensive coverage results, but types of modeled outputs may be limited and their accuracy is typically unknown. Capitalizing on strengths in both field and regional digital data, we modeled a synthetic stream network and a variety of hydrogeomorphic attributes for the Oregon Coastal Province. The synthetic network, encompassing 96,000 km of stream, was derived from digital elevation data. We used high‐resolution but spatially restricted data from field inventories and streamflow gauges to evaluate, calibrate, and interpret hydrogeomorphic attributes modeled from digital elevation and precipitation data. The attributes we chose to model (drainage area, mean annual precipitation, mean annual flow, probability of perennial flow, channel gradient, active‐channel width and depth, valley‐floor width, valley‐width index, and valley constraint) have demonstrated value for stream research and management. For most of these attributes, field‐measured, and modeled values were highly correlated, yielding confidence in the modeled outputs. The modeled stream network and attributes have been used for a variety of purposes, including mapping riparian areas, identifying headwater streams likely to transport debris flows, and characterizing the potential of streams to provide high‐quality habitat for salmonids. Our framework and models can be adapted and applied to areas where the necessary field and digital data exist or can be obtained.  相似文献   

16.
River channel geometry is an important input to hydraulic and hydrologic models. Traditional approaches to quantify river geometry have involved surveyed river cross sections, which cannot be extended to ungaged basins. In this paper, we describe a method for developing a synthetic rating curve to relate flow to water level in a stream reach based on reach‐averaged channel geometry properties developed using the Height above Nearest Drainage (HAND) method. HAND uses a digital elevation model (DEM) of the terrain and computes the elevation difference between each land surface cell and the stream bed cell to which it drains. Taking increments in water level in the stream, HAND defines the inundation zone and a water depth grid within this zone, and the channel characteristics are defined from this water depth grid. We apply our method to the Blanco River (Texas) and the Tar River (North Carolina) using 10‐m terrain data from the United States Geological Survey (USGS) 3D Elevation Program (3DEP) dataset. We evaluate the method's performance by comparing the reach‐average stage‐river geometry relationships and rating curves to those from calibrated Hydrologic Engineering Center's River Analysis System (HEC‐RAS) models and USGS gage observations. The results demonstrate that after some adjustment, the river geometry information and rating curves derived from HAND using national‐coverage datasets are comparable to those obtained from hydraulic models or gage measurements. We evaluate the inundation extent and show our approach is able to capture the majority of the Federal Emergency Management Agency (FEMA) 100‐year floodplain.  相似文献   

17.
Xia, Junqiang, Zhengbing Wang, Yanping Wang, and Xin Yu, 2012. Comparison of Morphodynamic Models for the Lower Yellow River. Journal of the American Water Resources Association (JAWRA) 1‐18. DOI: 10.1111/jawr.12002 Abstract: Significant channel adjustments often occur during flood seasons in the Lower Yellow River (LYR), and it is a challenging work to accurately simulate the morphodynamic processes in the LYR using numerical models. A comparison of two morphodynamic models (Delft3D and 2DLLCDM) for the LYR is presented herein to identify critical improvements for these models. The concepts of these models are first compared with each other. The models were then used to simulate the processes of flood routing, sediment transport, and morphological changes occurring in a braided reach of the LYR. The differences were investigated between the simulated results from these models and corresponding field measurements, and the results indicate that: (1) the hydrodynamic processes calculated by both models agree closely with the measurements if an appropriate Manning’s roughness coefficient is used; (2) the concentrations of suspended load at the downstream boundary calculated by the models agree reasonably with the observed data; and (3) the predicted cross‐sectional profiles obtained from these models do not correspond well with the measurements. Based on these findings, the weak aspects of the models are clarified, and three critical improvements are recommended, including: (1) the development of roughness predictor; (2) the refinement of graded sediment transport capacity formulation; and (3) the consideration of bank erosion module. These improvements need to be implemented in the future.  相似文献   

18.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

19.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

20.
Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号