首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Few studies have measured removal of pollutants by restored wetlands that receive highly variable inflows. We used automated flow-proportional sampling to monitor the removal of nutrients and suspended solids by a 1.3-ha restored wetland receiving unregulated inflows from a 14-ha agricultural watershed in Maryland, USA. Water entered the wetland mainly in brief pulses of runoff, which sometimes exceeded the 2500-m3 water holding capacity of the wetland. Half of the total water inflow occurred in only 24 days scattered throughout the two-year study. Measured annual water gains were within 5% of balancing water losses. Annual removal of nutrients differed greatly between the two years of the study. The most removal occurred in the first year, which included a three-month period of decreasing water level in the wetland. In that year, the wetland removed 59% of the total P, 38% of the total N, and 41% of the total organic C it received. However, in the second year, which lacked a drying period, there was no significant (p > 0.05) net removal of total N or P, although 30% of the total organic C input was removed. For the entire two-year period, the wetland removed 25% of the ammonium, 52% of the nitrate, and 34% of the organic C it received, but there was no significant net removal of total suspended solids (TSS) or other forms of N and P. Although the variability of inflow may have decreased the capacity of the wetland to remove materials, the wetland still reduced nonpoint-source pollution.  相似文献   

2.
ABSTRACT:  In 2001, the 1.04‐ha Hornbaker wetland in south‐central Pennsylvania was restored by blocking an artificial drainage ditch to increase water storage and hydraulic retention time (HRT). A primary goal was to diminish downstream delivery of nitrate that enters the wetland from a limestone spring, its main source of inflow. Wetland inflow and outflow were monitored weekly for two years to assess nitrate flux, water temperature, pH, and specific conductivity. In Year 2, spring discharge was measured weekly to allow calculation of nitrate loads and hydraulic retention time. Surface runoff was confirmed to be a small fraction of wetland inflows via rainfall‐runoff modeling with TR‐55. The full dataset (n = 102) was screened to remove 13 weeks in which spring discharge constituted < 85% of total inflows because of high precipitation and surface runoff. Over two years (n = 89), mean nitrate‐nitrogen concentrations were 7.89 mg/l in inflow and 3.68 mg/l in outflow, with a mean nitrate removal of 4.19 mg/l. During Year 2 (n = 47), for which nitrate load data were available, the wetland removed an average of 2.32 kg N/day, 65% of the load. Nitrate removal was significantly correlated with HRT, water temperature, and the concentration of nitrate in inflow and was significantly greater during the growing season (5.36 mg/l, 64%) than during the non‐growing season (3.23 mg/l, 43%). This study indicates that hydrologic restoration of formerly drained wetlands can provide substantial water quality benefits and that the hydrologic characteristics of spring‐fed wetlands, in particular, support effective nitrogen removal.  相似文献   

3.
Hydrologic influence on stability of organic phosphorus in wetland detritus   总被引:2,自引:0,他引:2  
Accretion of organic matter in wetlands provides long-term storage for nutrients and other contaminants. Water-table fluctuations and resulting alternate flooded and drained conditions may substantially alter the stability of stored materials including phosphorus (P). To study the effects of hydrologic fluctuation on P mobilization in wetlands, recently accreted detrial material (derived primarily from Typha spp.) was collected from the Everglades Nutrient Removal Project (ENRP), a constructed wetland used to treat agricultural drainage water in the northern Everglades. The detrital material was subjected to different periods of drawdown and consecutive reflooding under laboratory conditions. The 31P nuclear magnetic resonance (31P NMR) spectroscopy analysis revealed that sugar phosphate, glycerophosphate, polynucleotides, and phospholipids (glycerophosphoethanolamine and glycerophosphocholine) were the major forms of P in the detrital material. After 30 d of drawdown, polynucleotides were reduced to trace levels, whereas sugar phosphate, glycerophosphate, and phospholipids remained the major fractions of organic P. Microorganisms seemed to preferentially utilize nucleic acid P, perhaps to obtain associated nutrients including carbon and nitrogen. At the end of the 30-d reflooding period, cumulative P flux from detritus to water column accounted for 3% of the total P (< or = 15 d of drawdown) and further decreased to 2% at 30 d of drawdown, but increased to 8% at 60 d of drawdown. The drawdown (< or = 30 d) not only reduced P flux to the water column, but also increased the humification and microbial immobilization of P. Excessive drawdown (60 d), however, triggered the release of P into the water column as the water content of detritus decreased from 95 to 11%.  相似文献   

4.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

5.
Abstract: In 2006, we collected flow, sediment, and phosphorus (P) data at stream locations upstream and downstream of a small degraded wetland in south‐central Wisconsin traversed by a stream draining a predominantly agricultural watershed. The amount of sediment that left the wetland in the two largest storms, which accounted for 96% of the exported sediment during the observation period, was twice the amount that entered the wetland, even though only 50% of the wetland had been inundated. This apparently anomalous result is due to erosion of sediment that had accumulated in the low‐gradient channel and to the role of drainage ditches, which trapped sediment during the wetland‐filling phase. In the case of total P, the inflow to the wetland approximately equaled the outflow, although the wetland sequestered 30% of the incoming dissolved reactive P. The discrepancy is almost certainly due to net export of sediment. Many wetlands in the glaciated midwestern United States are ditched and traversed by low‐gradient channels draining predominantly agricultural areas, so the processes observed in this wetland are likely to be common in that region. Knowledge of this behavior presents opportunities to improve water quality in this and similar regions.  相似文献   

6.
ABSTRACT: Few water budgets exist for specific types of wetlands such as peatlands, even though such information provides the basis from which to investigate linkages between wetlands and upland ecosystems. In this study, we first determined the water budget and then estimated nutrient loading from an upland farm field into a 1.5 ha, kettle-block peatland. The wetland contains highly anisotropic peat and has no distinct, active layer of groundwater flow. We estimated the depth of the active layer using Fick's law of diffusion and quantified groundwater flow using a chemical mass balance model. Evapotranspiration was determined using MORECS, a semi-physical model based on the Penman-Monteith approach. Precipitation and surface outflow were measured using physical means. Groundwater provided the major inflow, 84 percent (44,418 m3) in 1993 and 88 percent (68,311 m3) in 1994. Surface outflow represented 54 percent (28,763 m3) of total outflows in 1993 and 48 percent (37,078 m3) in 1994. A comparison of several published water budgets for wetlands and lakes showed that error estimates for hydrologic components in this study are well within the range of error estimates calculated in other studies. Groundwater inflow estimates and nutrient concentrations of three springs were used to estimate agricultural nutrient loading to the site. During the study period, nutrient loading into the peatland via groundwater discharge averaged 24.74 kg K ha-1, 1.83 kg total inorganic P had, and 21.81 kg NO3-N ha-1.  相似文献   

7.
ABSTRACT: Flow rates, pH, iron concentration, and manganese concentration were measured during several storm events at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. Although rainfall and outlet iron concentration were not significant correlates at the larger wetland, flow rate was positively correlated to outlet iron concentration. A normal manganese treatment efficiency of 50 percent at the smaller wetland was reduced to zero during a heavy rain.  相似文献   

8.
The Tahoe City Wetland Treatment System (TCWTS) was constructed in 1997 to treat stormwater runoff from 23 ha of commercial, highway, and residential land use in the Lake Tahoe Basin. This subalpine, constructed, surface flow wetland treatment system consists of two cells in series, with a design water surface area of about 0.6 ha. Water quality monitoring from October 2002 through September 2003 was conducted with autosamplers at the inflow and outflow sites during 24 sampling events, with a median duration of 53 hours, representing 42 percent of total inflow to this wetland during the year. Monitoring data indicate an improvement of 49 percent or greater in effluent concentrations of dissolved phosphorus, nitrate, orthophosphorus, and total suspended solids. On average, event mean concentrations of total phosphorus were reduced from a median 279 μg/l at the inflow to 94 μg/l at the outflow. Event mean concentrations of total nitrogen were reduced from a median 1,599 μg/l at the inflow to 810 μg/l at the outflow. Net nutrient retention for the sampling period was estimated at 3 g phosphorus (P)/m2/y and 13 g nitrogen (N)/m2/y. Almost 4,000 kg of suspended sediment was captured by this wetland system during the year.  相似文献   

9.
Turf, including home lawns, roadsides, golf courses, parks, etc., is often the most intensively managed land use in the urban landscape. Substantial inputs of fertilizers and water to maintain turf systems have led to a perception that turf systems are a major contributor to nonpoint source water pollution. The primary objective of this study was to quantify nutrient (NO(3)-N, NH(4)-N, and PO(4)-P) transport in storm-generated surface runoff from a golf course. Storm event samples were collected for 5 yr (1 Apr. 1998-31 Mar. 2003) from the Morris Williams Municipal Golf Course in Austin, TX. Inflow and outflow samples were collected from a stream that transected the golf course. One hundred fifteen runoff-producing precipitation events were measured. Median NO(3)-N and PO(4)-P concentrations at the outflow location were significantly (p < 0.05) greater than like concentrations measured at the inflow location; however, median outflow NH(4)-N concentration was significantly less than the median inflow concentration. Storm water runoff transported 1.2 kg NO(3)-N ha(-1) yr(-1), 0.23 kg NH(4)-N ha(-1) yr(-1), and 0.51 kg PO(4)-P ha(-1) yr(-1) from the course. These amounts represent approximately 3.3% of applied N and 6.2% of applied P over the contributing area for the same period. NO(3)-N transport in storm water runoff from this course does not pose a substantial environmental risk; however, the median PO(4)-P concentration exiting the course exceeded the USEPA recommendation of 0.1 mg L(-1) for streams not discharging into lakes. The PO(4)-P load measured in this study was comparable to soluble P rates measured from agricultural lands. The findings of this study emphasize the need to balance golf course fertility management with environmental risks, especially with respect to phosphorus.  相似文献   

10.
Following a period of prolonged drought or intentional lake level drawdown, large littoral areas that once contained submersed aquatic vegetation (SAV) are reinundated when lake levels rise. A complete assessment of the contribution made by decomposing SAV to the in-lake phosphorus (P) concentration is important in both the management of Lake Okeechobee and understanding basic P processes. The P contribution to the open waters of Lake Okeechobee from a rapid inundation of exposed SAV was calculated by four methods: cores of field-desiccated SAV, cores of lab-desiccated SAV in the presence and absence of sediments, in situ decomposition, and sequential macrophyte harvesting. P releases, given such an episodic event, were similar among the four methods, ranging from 116±48 to 384±528 mg/m2 in the absence of sediment. When SAV is in contact with sediment, which is the realistic field situation, the amount of P released was four times less (30±14 mg/m2) than in the absence of sediment. The calculated P releases would result in total P concentration increases in the lake from 2 to 15 μg/liter (upper 95% CI=2–25 μg/liter) in the absence of sediment; only 1 μg/liter increase was predicted when SAV released P in contact with sediment. Thus it is unlikely that a significant rise in total P concentrations in the limnetic zone of the lake would occur from the export of P released during the desiccation of SAV in the littoral-marsh zone during a drawdown.  相似文献   

11.
Monthly inflow and outflow data were collected from three wet detention ponds in Wilmington, North Carolina, for a 29-mo period. Two ponds drained urban areas consisting primarily of residential, mixed services, and retail usage, while the third mainly drained residential and golf course areas. One of the urban ponds achieved significant reductions in total nitrogen, nitrate, ammonium, total phosphorus, orthophosphate, and fecal coliform bacterial counts. This pond was characterized by a high length to width ratio, with most inputs directed into the upper area, and extensive coverage by a diverse community of aquatic macrophyte vegetation. The second urban pond achieved significant reductions in turbidity and fecal coliform bacterial counts, but there were no significant differences between inflowing and outflowing water nutrient concentrations. There were substantial suburban runoff inputs entering the mid- and lower-pond areas that short-circuited pollutant removal contact time. The golf course pond showed significant increases in nitrate, ammonium, total phosphorus, and orthophosphate in the outflow relative to the inflow, probably as a result of course fertilization. However, nutrient concentrations in the outflow water were low compared with discharges from a selection of other area golf courses, possibly a result of the outflow passing through a wooded wetland following pond discharge. To achieve good reduction in a variety of pollutants, wet pond design should include maximizing the contact time of inflowing water with rooted vegetation and organic sediments. This can be achieved through a physical pond design that provides a high length to width ratio, and planting of native macrophyte species.  相似文献   

12.
A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. L?ve & D. L?ve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the sediment, 2% in the fallen litter, < 1% in the standing plants, and < 1% in the surface water. Thus, about 6% of the total Se inflow was unaccounted for in the internal compartments.  相似文献   

13.
In mountains of the western United States, channel incision has drawn down the water table across thousands of square kilometers of meadow floodplain. Here climate change is resulting in earlier melt and reduced snowpack and water resource managers are responding by investing in meadow restoration to increase springtime storage and summer flows. The record‐setting California drought (2012–2015) provided an opportunity to evaluate this strategy under the warmer and drier conditions expected to impact mountain water supplies. In 2012, 0.1 km2 of meadow floodplain was reconnected by filling an incised channel through Indian Valley in the central Sierra Nevada Mountains of California. Despite sustained drought conditions after restoration, summer baseflow from the meadow increased 5–12 times. Before restoration, the total summer outflow from the meadow was 5% more than the total summer inflow. After restoration, total summer outflow from the meadow was between 35% and 95% more than total summer inflow. In the worst year of the drought (2015), when inflow to the meadow ceased for at least one month, summer baseflow was at least five times greater than before restoration. Groundwater levels also rose at four out of five sites near the stream channel. Filling the incised channel and reconnecting the meadow floodplain increased water availability and streamflow, despite unprecedented drought conditions.  相似文献   

14.
Nutrient removal by constructed wetlands can decline over time due to the accumulation of organic matter. A prescribed burn is one of many management strategies used to remove detritus in macrophyte-dominated systems. We quantified the short-term effects on effluent water quality and the amount of aboveground detritus removed from a prescribed burn event. Surface water outflow concentrations were approximately three times higher for P and 1.5 times higher for total Kjeldhal nitrogen (TKN) following the burn event when compared to the control. The length of time over which the fire effect was significant (P < 0.05), 3 d for TKN and up to 23 d for P fractions. Over time, the concentration of soluble reactive phosphorus (SRP) in the effluent decreased, but was compensated with increases in dissolved organic phosphorus (DOP) and particulate phosphorus (PP), such that net total P remained the same. Total aboveground biomass decreased by 68.5% as a result of the burn, however, much of the live vegetation was converted to standing dead material. These results demonstrate that a prescribed burn can significantly decrease the amount of senescent organic matter in a constructed wetland. However, short-term nutrient releases following the burn could increase effluent nutrient concentrations. Therefore, management strategies should include hydraulically isolating the burned area immediately following the burn event to prevent nutrient export.  相似文献   

15.
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland.  相似文献   

16.
ABSTRACT: Phosphorus fluxes and water quality functions of a bottomland hardwood and freshwater marsh wetland soil were compared. The effect of soil physicochemical conditions, phosphorus loading rate, and diffusive exchange between soils and the overlying food water column on phosphorus release and retention were studied. The predominantly mineral swamp forest soil displayed greater phosphorus sorption potential than the organic freshwater marsh soil. Moreover, due to its low bulk density (0.11 g cm?3), the freshwater marsh soil surface area required for phosphorus retention is very large compared to the bottomland hardwood wetland soil. For both wetlands, soil redox status affected P release and assimilatory capacity. The more reducing the soils, the smaller their phosphorus retention capacity (greater their release). Phosphorus removal from the overlying water column into the wetland soils followed a first-order kinetic model. Under similar hydrological conditions, phosphorus was found to diffuse 1.2 times faster to the bottom. land hardwood soil than in the freshwater marsh soil. Results indicate that while the bottomland hardwood wetland soil will serve as a sink for phosphorus entering such wetland, phosphorus will be released and exported from the freshwater marsh soil into adjacent ecosystems.  相似文献   

17.
Previous field studies suggested that the macroalga, muskgrass (Chara canescens Desv. & Lois), plays an important role in the removal of selenium (Se) from agricultural drainage water. This study evaluated the efficiency of Se removal from drainage water by muskgrass-vegetated wetland microcosms, and determined the extent to which muskgrass removed Se through phytoextraction and biovolatilization. Six flow-through wetland microcosms were continuously supplied with drainage water containing an average Se concentration of 22 microg L(-1) over a 24-d experimental period. The Se mass input and outflow and the rate of Se volatilization were monitored daily for each microcosm. Three microcosms containing muskgrass reduced the daily mass Se input in the inflow drainage water by 72.1%; this compared with a reduction of 50.6% of the mass Se input for three unvegetated control microcosms. Selenium accumulated in muskgrass tissues accounted for 1.9% of the total mass Se input in the microcosm, followed by 0.5% via biological volatilization. The low rates of Se volatilization from selenate-supplied muskgrass, which were 10-fold less than from selenite, were probably due to a major rate limitation in the reduction of selenate to organic forms of Se in muskgrass. This conclusion was derived from X-ray absorption spectroscopy speciation analysis, which showed that muskgrass treated with selenite contained 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in muskgrass treated with selenate.  相似文献   

18.
Constructed treatment wetlands are a relatively low-cost alternative used for tertiary treatment of wastewater. Phosphorus (P) removal capacity of these wetlands may decline, however, as P is released from the accrued organic soils. Little research has been done on methods to restore the treatment capacity of aging constructed wetlands. One possibility is the seasonal addition of alum during periods of low productivity and nutrient removal. Our 3-mo mesocosm study investigated the effectiveness of alum in immobilizing P during periods of reduced treatment efficiency, as well as the effects on soil biogeochemistry. Eighteen mesocosms were established, triplicate experimental and control units for Typha sp., Schoenoplectus californicus, and submerged aquatic vegetation (SAV) (Najas guadalupensis dominated). Alum was slowly dripped to the water column of the experimental units at a rate of 0.91 g Al m(-2) d(-1) and water quality parameters were monitored. Soil cores were collected at experiment initiation and completion and sectioned into 0- to 5- and 5- to 10-cm intervals for characterization. The alum floc remained in the 0- to 5-cm surface soil, however, soil pH and microbial parameters were impacted throughout the upper 10 cm with the lowest pH found in the Typha treatment. Plant type did not impact most biogeochemical parameters; however, data were more variable in the SAV mesocosms. Amorphous Al was greater in the surface soil of alum-treated mesocosms, inversely correlated with soil pH and microbial biomass P in both soil layers. Microbial activity was also suppressed in the surface soil of alum-treated mesocosms. This research suggests alum may significantly affect the biogeochemistry of treatment wetlands and needs further investigation.  相似文献   

19.
The dwindling global reserves of extractable phosphorus (P) and its growing demand to produce the required food for a burgeoning global population (the global P crisis) necessitate the sustainable use of this crucial resource. To advert the crisis requires informed policy decisions which can only be obtained by a better understanding of the nature and magnitude of P flow through different systems at different geographical scales. Through a systematic and in-depth review of twenty one recent substance flow analyses of P, we have assessed the key P inflows, outflows, stocks, internal flows, and recycling flows at the city, regional, and country scales. The assessment has revealed, the main inflow and outflow of P at the city scale occurs through food and wastewater respectively, while the main stock of P occurs in landfill. At the regional scale, mineral ore is the main P inflow and chemical P fertilizer is the main outflow particularly in the regions that have P fertilizer production sector. In contrast, either chemical P fertilizer or animal feed is the key inflow and either food and agricultural products or soil losses (erosion, runoff, and/or leaching) is the major outflow especially in the regions without P fertilizer production sector. At the country scale, the key P inflow occurs either through mineral ore or chemical P fertilizer and the key outflow takes place either as food and agricultural products, waste (both solid and liquid), or soil losses (erosion, runoff, and/or leaching). The main stock of P both at the regional and country scales occurs in the soil of the agricultural production sector. As identified in this assessment, the key unproductive outflows and stocks at different geographical scales indicate that there is a potential scope to improve P management through the increased P recovery and recycling, and by the utilization of available soil P stocks. In many of the studies at all the geographical scales, P recycling flow has been found to be less than 20% of the total inflow, and even in some studies at the country scale, P recycling has been found to be entirely absent, which is a clear indication of poor P management. This study has also identified, there is a clear knowledge gap in relation to understanding the P flow over multiple years at the regional scale. The information about the key flows and stocks at different geographical scales as we identified can be utilized to make better P policy and management decisions for a city, region, or country. The information can also be used to guide future research that aims to analyze P flow at the city, regional, and country scales.  相似文献   

20.
The observed increase in phosphorus (P) loading into the Jordan River could increase eutrophication processes in Lake Kinneret, the only freshwater lake in Israel, which provides 25% of the country's drinking water. The P may originate from the peat soils of the highly altered Hula Valley's semiarid wetland ecosystem through which the Jordan River runs. The objectives of this research were to ascertain the sorption capacity of these soils and to identify areas with high potential for P release from soils to ground water. We extracted 80 soil samples collected across the valley with ammonium oxalate and determined the ratio of extractable P to Fe and Al, from which we derived the degree of phosphorus saturation (DPS). A relatively low DPS (<15%) was observed in Histosols compared with the high DPS (>30%) observed in many of the hydromorphic organo-mineral soils. We used a sequential Gaussian simulation technique to assess the spatial pattern of the DPS and found that the Histosols have a low probability (<10%) of exceeding the widely used environmental DPS threshold of 25%. The areas characterized by mineral soils, such as hydromorphic Vertisols and various marl redoximorphic soils, have a high probability (>60%) of exceeding the threshold value. The ability to predict the concentrations of dissolved P in ground water based on DPS values was somewhat impaired because of the preferential flow characteristics in this altered wetland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号