首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The remediation of metal contamination in estuarine and reduced sediments is another challenge for the electrokinetic process. Problems result from the complex chemical composition of saline reduced sediments. In the experiments described here copper was added into saline reduced sediments to simulate the natural situation. Two constant voltages were applied across the electrokinetic cell to investigate the effect of an increase in potential difference on the electrokinetic process. Acetic acid at pH 6 and 4 was also added to the cathode in separate experiments to enhance copper removal. The results from this study showed that in the unenhanced experiments most of copper remained in the soil and was unaffected by the electrokinetic process. At the end of unenhanced electrokinetic experiments, the copper concentration was found only to be slightly changed in the anode region. Up to 21% of the copper was found precipitated near the anode when the applied voltage was 10V and this increased to 25% when the applied voltage was 7V. In the enhanced electrokinetic experiments up to 98% of copper was removed from section 1 and precipitated again in sections 2 and 3. This indicates that a significant amount copper removal from the saline sediments may be achieved by the enhanced electrokinetic process.  相似文献   

2.
The use of ethylene diamine tetraacetic acid (EDTA) on the electrokinetic removal of cadmium-contaminated soil was evaluated. A total of four different tests were conducted using EDTA as a washing solution as well as a purging solution at the electrode compartments. The efficiency of electrokinetic extraction was significantly influenced by the pH of the soil medium. The results show that EDTA was effective in desorbing cadmium at a high pH, with Cd-EDTA(-) anion complexes migrating toward the anode. At low pH values near the anode area, cadmium existed as Cd(2+), migrating toward the cathode. Such contradicting directions of cadmium have resulted in its detrimental removal from the soil cell. However, accumulation of cadmium near the cathode was observed at the end of the tests due to the dominating low pH in the soil cell. The phytotoxicity after the electrokinetic process was investigated using Sorghum saccharatum, Lepidium sativum and Sinapis alba plants. The germination index was a major endpoint estimated by measuring seed germination and shoot elongation. The results obtained show that the phytotoxicity was increased after electrokinetic extraction. Despite, the extensive cadmium removal from two-thirds of the cell, the low pH of the soil was the principal parameter exhibiting the phytotoxicity.  相似文献   

3.
The oxidative remobilization of uranium from biogenic U(IV) precipitates was investigated in bioreduced sediment suspensions in contact with atmospheric O2 with an emphasis on the influence of Fe(II) and pH on the rate and extent of U release from the solid to the aqueous phase. The sediment was collected from the U.S. Department of Energy Field Research Center (FRC) site at Oak Ridge, Tennessee. Biogenic U(IV) precipitates and bioreduced sediment were generated through anaerobic incubation with a dissimilatory metal reducing bacterium Shewanella putrefaciens strain CN32. The oxidative remobilization of freshly prepared and 1-yr aged biogenic U(IV) was conducted in 0.1 mol/L NaNO3 electrolyte with variable pH and Fe(II) concentrations. Biogenic U(IV)O2(s) was released into the aqueous phase with the highest rate and extent at pH 4 and 9, while the U remobilization was the lowest at circumneutral pH. Increasing Fe(II) significantly decreased U remobilization to the aqueous phase. From 70 to 100% of the U in the sediments used in all the tests was extractable at the experiment termination (41 d) with a bicarbonate solution (0.2 mol/L), indicating that biogenic U(IV) was oxidized regardless of Fe(II) concentration and pH. Sorption experiments and modeling calculations indicated that the inhibitive effect of Fe(II) on U(IV) oxidative remobilization was consistent with the Fe(III) oxide precipitation and U(VI) sorption to this secondary phase.  相似文献   

4.
Uptake and release of phosphorus from overland flow in a stream environment   总被引:1,自引:0,他引:1  
Phosphorus runoff from agricultural fields has been linked to fresh-water eutrophication. However, edge-of-field P losses can be modified by benthic sediments during stream flow by physiochemical processes associated with Al, Fe, and Ca, and by biological assimilation. We investigated fluvial P when exposed to stream-bed sediments (top 3 cm) collected from seven sites representing forested and agricultural areas (pasture and cultivated), in a mixed-land-use watershed. Sediment was placed in a 10-m-long, 0.2-m-wide fluvarium to a 3-cm depth and water was recirculated over the sediment at 2 L s(-1) and 5% slope. When overland flow (4 mg dissolved reactive phosphorus [DRP] and 9 mg total phosphorus [TP] L(-1)) from manured soils was first recirculated, P uptake was associated with Al and Fe hydrous oxides for sediments from forested areas (pH 5.2-5.4) and by Ca for sediments from agricultural areas (pH 6.5-7.2). A large increase (up to 200%) in readily available P NH4Cl fraction was noted. After 24 h, DRP concentration in channel flow was related to sediment solution P concentration at which no net sorption or desorption of P occurs (EPC0) (r2 = 0.77), indicating quasi-equilibrium. When fresh water (approximately 0.005 mg P L(-1) mean base flow DRP at seven sites) was recirculated over the sediments for 24 h, P release kinetics followed an exponential function. Microbial biomass P accounted for 34 to 43% of sediment P uptake from manure-rich overland flow. Although abiotic sediment processes played a dominant role in determining P uptake, biotic process are clearly important and both should be considered along with the location and management of landscape inputs for remedial strategies to be effective.  相似文献   

5.
Phosphorus (P) release from sediment particles to the interstitial water has been studied extensively, but the contribution of different inorganic P pools in sediment under differing environmental conditions is not fully understood. This study was undertaken to get more detailed information about the chemical mobilization mechanisms. Phosphorus mobilization from reserves bound by Al, Fe, and Ca compounds in response to increased pH and to inorganic silicon (Si) enrichments was investigated using a sequential fractionation analysis and an isotope-labeling technique. The aerobic sediment of Lake Vesij?rvi had a high P retention capacity, and Fe-bound P was the largest inorganic P pool as well as the main source of released P. High Si addition (47 mg Si L-1 sediment) released more P to the interstitial water than did the elevation of pH from 6.6 to 9.5, since Si lowered the resorption of released P onto hydrated Al oxides. This finding reveals that P equilibrium between Fe-bound and Al-bound P in sediments regulates P net mobilization to the interstitial water under aerobic conditions. Furthermore, elevated pH combined with high Si enrichment had a positive synergistic effect, resulting in the most substantial P mobilization. This synergism may cause a self-fueled increase in the internal loading of P. It accentuates the effect of diatom sedimentation on P fluxes in eutrophic lakes with high pH and may favor the appearance of bloom-forming cyanobacteria.  相似文献   

6.
Ocoee Lake No. 3 is the first reservoir receiving suspended sediments contaminated with trace metals discharged by acid mine effluents from the Ducktown Mining District, Tennessee. Bottom sediments (0-5 cm) from the lake were sampled to assess the potential for future adverse environmental effects if no remediation controls or activities are implemented. The sediments were found to include a major component (173 +/- 19 g kg(-1)) that dissolved in 6 mol L(-1) HCl within 24 h. This acid-soluble and relatively labile fraction contained high concentrations of Fe (460 +/- 40 g kg(-1)), Al (99 +/- 11 g kg(-1)), Mn (10 +/- 8 g kg(-1)), Cu (2000 +/- 700 mg kg(-1)), Zn (1300 +/- 200 mg kg(-1)), and Pb (300 +/- 200 mg kg(-1)). When the pH of water in contact with the sediment was decreased experimentally from 6.4 to 2.6, the concentrations of dissolved trace metals increased by factors of 2200 for Pb, 160 for Cu, 21 for Zn, 9 for Cd, 8 for Ni, and 5 for Co. The order in which metals were released with decreasing pH was the reverse of that reported for pH-dependent sorption of these metals in upstream systems. Substantial release of trace metals from the sediment was observed even by a modest decrease of pH from 6.4 to 5.9. Therefore, the metal-rich sediment of the lake should be considered as potentially hazardous to bottom-dwelling aquatic species and other organisms in the local food chain. In addition, if the reservoir is dredged or if the dam is removed, the accumulated sediment may have to be treated for recovery of sorbed metals.  相似文献   

7.
The effect of two wetland plants, Typha latifolia L. (cattail) and Phragmites australis (Cav.) Trin. ex Steud (common reed), on the fate of Cr(VI) in wetland sediments was investigated using greenhouse bench-scale microcosm experiments. The removal of Cr(VI) was monitored based on the vertical profiles of aqueous Cr(VI) in the sediments. The Cr(VI) removal rates were estimated taking into account plant transpiration, which was found to significantly concentrate dissolved species in the sediments. After correcting for evapotranspiration, the actual Cr(VI) removal rates were significantly higher than would be inferred from uncorrected profiles. On average, the Cr(VI) removal rates were 0.005 to 0.017 mg L(-1) d(-1), 0.0003 to 0.08 mg L(-1) d(-1), and 0.004 to 0.13 mg L(-1) d(-1) for the control, T. latifolia, and P. australis microcosms, respectively. The fate of the removed Cr(VI) was examined by determining the quantity and chemical speciation of the Cr in the sediment and plant materials. Chromium(III) was the dominant form of Cr in both the sediment and plants, and precipitation of Cr(III) in the sediment was the major pathway responsible for the disappearance of aqueous Cr(VI) from the pore water. Incubation results showed that abiotic reduction was the primary mechanism underlying Cr(VI) removal in the microcosm sediments. Organic compounds produced by plants, including root exudates and mineralization products of dead roots, are thought to be the factor that is either directly or indirectly responsible for the gap between Cr(VI) removal efficiencies in the sediments of the vegetated and unvegetated microcosms.  相似文献   

8.
The conventional chemical reduction-precipitation technique in the removal of Cr(VI) from contaminated groundwater involves a two-step process whereby Cr(VI) is first reduced to Cr(III) at an acidic pH by a reducing agent and in a subsequent step, Cr(III) is precipitated as insoluble hydroxide at an alkaline pH. In a variation of this method, Fe(II) is added electrochemically to the Cr(VI) containing water. From a pure iron electrode, Fe(2+) ions are released into the solution and bring forth the reduction of Cr(VI). At the cathode, H(2)O is reduced whereby the OH(-) ions entering the solution keep the pH of the solution in the alkaline range. This latter fact greatly facilitates simultaneous reduction of Cr(VI) to Cr(III) and co-precipitation of hydroxides of trivalent Cr and Fe. On the basis of a set of experimental data, it is shown that this process is both thermodynamically and kinetically efficient, meaning, with the electrochemical method, rapid and nearly complete removal of Cr(VI) from a groundwater source with both high and low levels of Cr-contamination can be achieved. These factors make the electrochemical process superior to the conventional chemical process in remediation of Cr-contaminated groundwater.  相似文献   

9.
《环境质量管理》2018,27(4):163-171
In order to examine the forms, sources, and pollution of heavy metals—arsenic (As), aluminum (Al), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn)—in Daechung Lake, Korea, sediment samples were collected in November 2014. Daechung Lake was constructed to supply water for human consumption, agricultural use, and industrial use as well as to generate electric power. The lake is stratified in the summer and surrounded mostly by agricultural and mining areas. Our results indicate that the heavy metals (except As and Cd) displayed similar concentrations at all of the sampling stations. As and Cd were high in locations where fine sediments had built up. Based on the enrichment factor of the metals, the sediments collected from all of the sampling stations were highly polluted by As and Cd. Therefore, deposition of heavy metals in Daechung Lake is possibly controlled by grain size and anthropogenic activity, such as drainage from abandoned mines, agricultural activities, and/or the release of wastewater. The most dominant forms for all of the metals were oxide and silicate forms. This suggests that the sediments of Daechung Lake are not highly sulfidic. However, the sediment samples were collected after the collapse of seasonal stratification. Therefore, future studies should include elucidation of major sources for As and Cd and the collection of sediments during months of stratification.  相似文献   

10.
Pretreatment with chemicals such as ethylenediaminetetraacetic acid (EDTA) is often used to improve the analysis of sediment P with solution P-31 nuclear magnetic resonance spectroscopy (35P-NMR), but there is a lack of a comprehensive assessment of the methodology. In this study, the effects of EDTA pretreatment on sediment P extracted using a mixture of 0.25 mol L(-1) NaOH and 50 mmol L(-1) EDTA (NaOH-EDTA) were examined with 45 different sediments. The results showed that EDTA pre-extraction decreased the amount of P extracted by NaOH-EDTA when the concentration ratio of sediment Ca to the sum of sediment Fe and Al [Ca/(Fe+Al), on a wt/vol basis] was lower than 0.4. An increase in total extracted P, coupled with substantial increases in total extracted paramagnetic ions such as Fe and Mn, was observed for another group of sediments with Ca/(Fe+Al) > 0.5, possibly due to the matrix effect. Analysis of 16 representative sediments with 31P-NMR showed that orthophosphate diesters were substantially removed by EDTA pre-extraction for sediments with Ca/ (Fe+Al) between 0.4 and 0.7, reflecting a high risk posed by this pretreatment. Phosphorus diversity and concentration of individual P compounds were markedly improved for sediments with Ca/(Fe+Al) > 0.7, suggesting that EDTA pretreatment was particularly useful for 31P-NMR analysis of calcareous sediments. The present study showed that sediment properties played an important role in determining pretreatment effects. Caution is advised when applying pretreatment methods to different sediments.  相似文献   

11.
Batch electrocoagulation experiments were carried out to evaluate the removal of sulfate and COD from petroleum refinery wastewater using three types of electrodes: aluminum, stainless steel, and iron. The effects of current density, electrode arrangement, electrolysis time, initial pH, and temperature were investigated for two wastewater samples with different concentrations of COD and sulfate. The experimental results indicated that the utilization of aluminum, as anode and cathode, was by far the most efficient arrangement in the reduction of both the contaminants. The treatment process was found to be largely affected by the current density and the initial composition of the wastewater. Although electrocoagulation was found to be most effective at 25°C and a pH of 8, the influence of these two parameters on the removal rate was not significant. The results demonstrated the technical feasibility of electrocoagulation as a possible and reliable technique for the pretreatment of heavily contaminated petroleum refinery wastewater.  相似文献   

12.
Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.  相似文献   

13.
ABSTRACT: Inputs of copper‐based crop protectants from tomato fields grown under plastic mulch agriculture (plasticulture) to an estuarine creek were investigated. Copper was measured in runoff from diverse land‐uses including conventional agriculture, plasticulture, residences, and natural areas. Water column and sediment copper concentrations were measured in plasticulture and control (nonagriculture) watersheds. Copper concentrations in plasticulture‐impacted creeks exceeded background levels episodically. High concentrations occurred during or immediately after runoff‐producing rains. Concentrations of 263 μg/L total copper and 126 μg/L dissolved copper were measured in a tidal creek affected by plasticulture; concentrations exceeded the shellfish LC50 values and the water quality criteria of 2.9 μg/L dissolved copper. Control watersheds indicated background water column levels of ≤ 4 μg/L dissolved copper with similar copper levels during periods with and without rain. The copper concentrations in tomato plasticulture field runoff itself contained up to 238 μg/L dissolved copper. Copper concentrations in runoff from other land‐uses were less than 5 μg/L dissolved copper. Creek sediment samples adjacent to a plasticulture field contained significantly higher copper concentrations than sediments taken from nonplasticulture watersheds.  相似文献   

14.
Bentonite clay has been used for the adsorption of Fe(II) from aqueous solutions over a concentration range of 80-200 mg/l, shaking time of 1-60 min, adsorbent dosage from 0.02 to 2 g and pH of 3. The process of uptake follows both the Langmuir and Freundlich isotherm models and also the first-order kinetics. The maximum removal (>98%) was observed at pH of 3 with initial concentration of 100 mg/l and 0.5 g of bentonite. The efficiency of Fe(II) removal was also tested using wastewater from a galvanized pipe manufacturing industry. More than 90% of Fe(II) can be effectively removed from the wastewater by using 2.0 g of the bentonite. The effect of cations (i.e. zinc, manganese, lead, cadmium, nickel, cobalt, chromium and copper) on the removal of Fe(II) was studied in the concentration range of 10-500 mg/l. All the added cations reduced the adsorption of Fe(II) at high concentrations except Zn. Column studies have also been carried out using a certain concentration of wastewater. More than 99% recovery has been achieved by using 5 g of the bentonite with 3M nitric acid solution.  相似文献   

15.
Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site.  相似文献   

16.
Unlike the situation in the direct methanol fuel cell (DMFC) fed with dilute liquid methanol solution, the required water in anode for a DMFC fed with neat methanol is entirely transported from cathode. In this study, the water concentration in anode catalyst layer of such a DMFC operating with fully active mode is theoretically analyzed, followed by the experimental investigations on the effects of air flow rate and operating temperature on cell performance. The results revealed that the air flow rate has a strong impact on cell performance, especially at larger current density. Overmuch air causes rapid decline of cell performance, which results from the dehydration of membrane and lack of water in the anode reaction sites. Raising temperature induces faster reaction kinetics, while undesired stronger water dissipation from the DMFC. In practice, the stable cell resistance can be used as a criterion to help the DMFC to achieve a high and sustainable performance by finely combining the air flow rate and operating temperature.  相似文献   

17.
ABSTRACT

When the proton exchange membrane fuel cell (PEMFC) works in the mode of dead-ended anode (DA), the water and the nitrogen in the cathode flow channel will diffuse, and accumulate, to the anode flow channel resulting in fuel starvation on the anode side as well as the performance degradation of PEMFC, which has an important impact on the durability and working state of PEMFC. Because the PEMFC performance is closely related to the cathode working parameters, in order to study the influence of the cathode working parameters on the performance of the PEMFC with DA, a two-dimensional analytical model of PEMFC with DA is established in this article, and the parameters in the model are corrected by experiments. The effects of humidity, stoichiometric ratio and working pressure of cathode gas on the performance of PEMFC with DA are studied by model and experiment, as well as the effects of these working parameters on the accumulation process and distribution of water vapor and nitrogen on the anode side, and the relative performance of PEMFC with DA under different cathode working parameters is obtained. This model is of great significance to guide the practical work of the PEMFC with DA.  相似文献   

18.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

19.
Due to anthropogenic inputs, elevated concentrations of metals frequently occur in aquatic sediments. In order to make defensible estimates of the potential risk of metals in sediments and/or develop sediment quality criteria for metals, it is essential to identify that fraction of the total metal in the sediments that is bioavailable. Studies with a variety of benthic invertebrates indicate that interstitial (pore) water concentrations of metals correspond very well with the bioavailability of metals in test sediments. Many factors may influence pore water concentrations of metals; however, in anaerobic sediments a key phase controlling partitioning of several cationic metals (cadmium, nickel, lead, zinc, copper) into pore water is acid volatile sulfide (AVS). In this paper, we present an overview of the technical basis for predicting bioavailability of cationic metals to benthic organisms based on pore water metal concentrations and metal-AVS relationships. Included are discussions of the advantages and limitations of metal bioavailability predictions based on these parameters, relative both to site-specific assessments and the development of sediment quality criteria.  相似文献   

20.
Phosphorus release from stream sediments into water could increase P loads leaving agricultural watersheds and contribute to lag-time between implementation of best management practices and improvement in water quality. Improved understanding of P release from stream sediments can assist in setting water quality goals and designing stream monitoring programs. The objective of this study was to estimate the relative potential of sediments and soils to release P to stream water in two agricultural watersheds. Stream sediments were collected from banks, pools, riffles, and depositional features. Soils were sampled from wheat, row crop, pasture, and manure-amended fields. Sediments and soils were analyzed for equilibrium P concentration at zero net P sorption (EPC0), maximum P adsorption capacity (P(max)), anion exchange extractable P (P(lab)), and degree of P saturation. Dissolved reactive P (DRP) of stream water was monitored. Stream sediment EPC0 was similar to or less than EPC0 from field soils; however, P(lab) of stream sediments was three times less than field soils. Sediments were sandy and had low P(max) due to low oxalate-extractable Fe and Al, which could be explained by stream geomorphology. Manure-amended fields had the highest EPC0 and P(lab) due to continued inputs of manure-based P; however, conventionally fertilized fields also represented an important P source due to their vast extent. Stream water DRP was similar to EPC0 of sediments during base flow and similar to EPC0 of field soils during storm flow. These results indicate that sediments in these streams are a relatively minor P source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号