首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Use of the zebra mussel (Dreissena polymorpha) as an indicator of previously elevated bacteria concentrations in a watershed was examined. The ability of the zebra mussel to accumulate and purge Escherichia coli over several days was investigated in both laboratory and field experiments. In laboratory experiments, periodic enumeration of E. coli in mussels that had been exposed to a dilute solution of raw sewage demonstrated that (i) maximum concentrations of E. coli are reached within a few hours of exposure to sewage, (ii) the tissue concentration attained is higher than the concentration in the ambient water, and (iii) the E. coli concentrations take several days to return to preexposure concentrations when mussels are subsequently placed in sterile water. In field experiments conducted in southeast Michigan in the Clinton River watershed, brief increases in E. coli concentrations in the water were accompanied by increases in mussel concentrations of E. coli that lasted 2 or 3 d. The ability of mussels to retain and to concentrate E. coli made it possible to detect E. coli in the environment under conditions that conventional monitoring may often miss. Sampling caged mussels in a river and its tributaries may enable watershed managers to reduce the sampling frequency normally required to identify critical E. coli sources, thereby providing a more cost-effective river monitoring strategy for bacterial contamination.  相似文献   

2.
Canada's National Agri-Environmental Standards Initiative sought to develop an environmental benchmark for low-level waterborne pathogen occurrence in agricultural watersheds. A field study collected 902 water samples from 27 sites in four intensive agricultural watersheds across Canada from 2005 to 2007. Four of the sites were selected as reference sites away from livestock and human fecal pollution sources in each watershed. Water samples were analyzed for Campylobacter spp., Salmonella spp., Escherichia coli O157:H7, Cryptosporidium spp., Giardia spp., and the water quality indicator E. coli. The annual mean number of pathogen species was higher at agricultural sites (1.54 ± 0.07 species per water sample) than at reference sites (0.75 ± 0.14 species per water sample). The annual mean concentration of E. coli was also higher at agricultural sites (491 ± 96 colony-forming units [cfu] 100 mL(-1)) than at reference sites (53 ± 18 cfu 100 mL(-1)). The feasibility of adopting existing E. coli water quality guideline values as an environmental benchmark was assessed, but waterborne pathogens were detected at agricultural sites in 80% of water samples with low E. coli concentrations (<100 cfu 100 mL(-1)). Instead, an approach was developed based on using the natural background occurrence of pathogens at reference sites in agricultural watersheds to derive provisional environmental benchmarks for pathogens at agricultural sites. The environmental benchmarks that were derived were found to represent E. coli values lower than geometric mean values typically found in recreational water quality guidelines. Additional research is needed to investigate environmental benchmarks for waterborne pathogens within the context of the "One World, One Health" perspective for protecting human, domestic animal, and wildlife health.  相似文献   

3.
Given known limitations of current microbial source-tracking (MST) tools, emphasis on small, simple study areas may enhance interpretations of fecal contamination sources in streams. In this study, three MST tools-Escherichia coli repetitive element polymerase chain reaction (rep-PCR), coliphage typing, and Bacteroidales 16S rDNA host-associated markers-were evaluated in a selected reach of Plum Creek in south-central Nebraska. Water-quality samples were collected from six sites. One reach was selected for MST evaluation based on observed patterns of E. coli contamination. Despite high E. coli concentrations, coliphages were detected only once among water samples, precluding their use as a MST tool in this setting. Rep-PCR classification of E. coli isolates from both water and sediment samples supported the hypothesis that cattle and wildlife were dominant sources of fecal contamination, with minor contributions by horses and humans. Conversely, neither ruminant nor human sources were detected by Bacteroidales markers in most water samples. In bed sediment, ruminant- and human-associated Bacteroidales markers were detected throughout the interval from 0 to 0.3 m, with detections independent of E. coli concentrations in the sediment. Although results by E. coli-based and Bacteroidales-based MST methods led to similar interpretations, detection of Bacteroidales markers in sediment more commonly than in water indicates that different tools to track fecal contamination (in this case, tools based on Bacteroidales DNA and E. coli isolates) may have varying relevance to the more specific goal of tracking the sources of E. coli in watersheds. This is the first report of simultaneous, toolbox approach application of a library-based and marker-based MST analyses to flowing surface water.  相似文献   

4.
This study investigates hydrological controls on E. coli concentration and loading in two artificially drained agricultural watersheds (58 and 23 km(2)) of the U.S. Midwest. Stream E. coli concentrations are significantly (p < 0.02) lower at base flow than high flow; however, E. coli load is significantly higher at high flow than at low flow (p < 0.001). Although E. coli concentrations are not significantly higher (p = 0.253) in summer/fall (3269 MPN/100 mL) than in the winter/spring (2411 MPN/100 mL), E. coli load is significantly higher (p < 0.05) in winter/spring (346 MPN/day) than in summer/fall season (75 MPN/day). Correlation analysis indicates that discharge and precipitation are the best indicators of E. coli concentration and 7-d antecedent precipitation (7dP), the best indicator of E. coli loading in the watersheds studied regardless of flow conditions and location. However, E. coli concentration and loading best correlate to 7dP and turbidity at base flow. A spatial dependency is also observed at base flow with E. coli concentration and load correlating better to 7dP in the headwaters and to turbidity in the lower reaches of the watersheds studied. For high flow conditions, E. coli concentration and loading are poorly correlated to most variables, except stream water temperature and 7-d antecedent discharge. These results are consistent with those reported in the literature and suggest that, at least during base flow conditions, turbidity and 7dP may be usable in artificially drained landscapes of the Midwest to identify potential hot spots of E. coli contamination.  相似文献   

5.
In regions where animal agriculture is prominent, such as southern Alberta, higher rates of gastrointestinal illness have been reported when compared with nonagricultural regions. This difference in the rate of illness is thought to be a result of increased zoonotic pathogen exposure through environmental sources such as water. In this study, temporal and spatial factors associated with bacterial pathogen contamination of the Oldman River, which transverses this region, were analyzed using classification and regression tree analysis. Significantly higher levels of fecal indicators; more frequent isolations of Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica spp.; and higher rates of detection of pig-specific Bacteroides markers occurred at downstream sites than at upstream sites, suggesting additive stream inputs. Fecal indicator densities were also significantly higher when any one of these three bacterial pathogens was present and where there were higher total animal manure units; however, occasionally pathogens were present when fecal indicator levels were low or undetectable. Overall, Salmonella spp., Campylobacter spp., and E. coli O157:H7 presence was associated with season, animal manure units, and total rainfall on the day of sampling and 3 d in advance of sampling. Several of the environmental variables analyzed in this study appear to influence pathogen prevalence and therefore may be useful in predicting water quality and safety and in the improvement of watershed management practices in this and other agricultural regions.  相似文献   

6.
High levels of fecal bacteria are a concern for recreational waters; however, the source of contamination is often unknown. This study investigated whether direct sequencing of a bacterial gene could be utilized for detecting genetic differences between bacterial strains for microbial source tracking. A 525-nucleotide segment of the gene for beta-glucuronidase (uidA) was sequenced in 941 Escherichia coli isolates from the Clinton River-Lake St. Clair watershed, 182 E. coli isolates from human and animal feces, and 34 E. coli isolates from a combined sewer. Environmental isolates exhibited 114 alleles in 11 groups on a genetic tree. Frequency of strains from different genetic groups differed significantly (p < 0.03) between upstream reaches (Bear Creek-Red Run), downstream reaches, and Lake St. Clair beaches. Fecal E. coli uidA sequences exhibited 81 alleles that overlapped with the environmental set. An algorithm to assign alleles to different host sources averaged approximately 75% correct classification with the fecal data set. Using the same algorithm, the percent of environmental isolates assignable to humans decreased significantly between Bear Creek-Red Run (30 +/- 3%) and the beaches (17 +/- 2%) (p < 0.05). Birds accounted for approximately 50% of assignable environmental isolates. For combined sewer isolates, the same algorithm assigned 51% to humans. These experiments demonstrate differences in the frequency of different E. coli strains at different locations in a watershed, and provide a "proof in principle" that sequence-based data can be used for microbial source tracking.  相似文献   

7.
The presence of Escherichia coli in recreational and potable waters is a major concern to the general public as elevated levels of E. coli suggest the presence of pathogenic bacteria and viruses. Unfortunately, traditional microbial techniques do not allow specific identification of the source of E. coli. This reduces the ability to target management practices that reduce bacterial contamination. In the Finger Lakes region of western New York, USA, wildlife resides in relatively high densities on watersheds dominated by people and dairy farms, and as a result, the sources of fecal degradation of potable and recreational waters are often unknown. In the Conesus Lake watershed, the sources of microbial contamination were assessed using Rep-PCR molecular tools, a method of amplifying repetitive DNA sequences found throughout the E. coli genome to produce distinct fingerprints for a given ecotype. Molecular fingerprints of E. coli isolated from regional populations of cattle, humans, geese and deer were compared to E. coli isolated from stream water samples. Canonical discriminant function analysis indicated that the DNA fingerprints of the original source group isolates were correctly predicted 90.2% of the time. Since land use in the sub-watersheds was dominated by dairy and cash crop farms, it was expected that the majority of E. coli isolated would be identified as cows; however, an unexpectedly high percentage of isolates were identified as wildlife (geese and deer). Geese were the dominant source of E. coli (44.7-73.7% of the total sources) in four sub-watersheds followed by cows (10.5-21.1%), deer (10.5-18.4%), humans (5.3-12.9%) and unidentifiable sources (0.0-11.8%). Management practices intended to decrease the number of cattle or the amount of manure spread in a sub-watershed were reflected in a decrease of E. coli ecotypes associated with dairy cows.  相似文献   

8.
Because the large rivers of the Seine watershed have a low microbiological water quality, the main sources of fecal contamination were investigated in the present study. The inputs of the point (wastewater treatment plants (WWTPs) effluents) and non-point sources (surface runoff and soil leaching) of fecal bacteria were quantified for Escherichia coli and intestinal enteroccoci used as bacterial indicators. In order to assess the contamination through non-point sources, fecal indicators abundance was estimated in samples collected in small streams located in rural areas upstream from all point sources; these small rivers were characterized by the land use of their watershed. Bacterial indicator numbers were also measured in effluents of WWTPs, some using classical treatment (settling followed by activated sludge process) and some using an additional disinfection stage (UV irradiation). These data were used to estimate the respective importance of each type of source at the scale of the whole Seine river watershed taking into account the land use and the population density. It shows the predominant importance of the point sources of fecal indicator bacteria at the scale of the whole watershed. In a scenario in which activated sludge treatment would be complemented with UV in all WWTPs located in this watershed, the non-point sources of fecal indicator bacteria would be dominant.  相似文献   

9.
This study analyzed the occurrence of Escherichia coli in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region using synoptic monitoring (samples taken throughout the watershed system) during base-flow conditions. The objective of the study was to evaluate the occurrence of E. coli during base-flow conditions for several months at seven different main channel and nine different tributary sampling sites in the Stock Creek watershed, a 49.3-km(2) basin located in Knoxville, TN. Escherichia coli densities were measured using the Colilert (Defined Substrate Technology) method. The instantaneous loads for E. coli were determined from measured flow rates and E. coli densities, with the highest loading rates observed in the late fall. The study indicated a strong correlation between E. coli load rate (colony-forming units [CFU]/d), 7-d antecedent precipitation, and turbidity. Water quality data, however, also exhibited a spatial dependency; for example, the E. coli load rate was better correlated with turbidity in the slower draining basin tailwater sampling sites than in the faster draining upstream headwater sampling sites. In the headwater sites, the E. coli load rate was better correlated with 7-d antecedent precipitation than turbidity.  相似文献   

10.
A Water Quality Index (WQI) is a numeric expression used to evaluate the quality of a given water body and to be easily understood by managers. In this study, a modified nine-parameter Scottish WQI was used to assess the monthly water quality of the Douro River during a 10-year period (1992–2001), scaled from zero (lowest) to 100% (highest). The 98,000 km2 of the Douro River international watershed is the largest in the Iberian Peninsula, split between upstream Spain (80%) and downstream Portugal (20%). Three locations were surveyed: at the Portuguese–Spanish border, 350 km from the river mouth; 180 km from the mouth, where the river becomes exclusively Portuguese; and 21 km from the mouth. The water received by Portugal from Spain showed the poorest quality (WQI 47.3 ± 0.7%); quality increased steadily downstream, up to 61.7 ± 0.7%. In general, the water quality at all three sites was medium to poor. Seasonally, water quality decreased from winter to summer, but no statistical relationship between quality and discharge rate could be established. Depending on the location, different parameters were responsible for the episodic decline of quality: high conductivity and low oxygen content in the uppermost reservoir, and fecal coliform contamination downstream. This study shows the need to enforce the existing international bilateral agreements and to implement the European Water Quality Directive in order to improve the water quantity and quality received by the downstream country of a shared watershed, especially because two million inhabitants use the water from the last river location as their only source of drinking water.  相似文献   

11.
Natural (estradiol, estrone, testosterone, estriol) and synthetic hormones (ethinylestradiol) are constantly excreted into the environment from human and animal sources but little is known of their transport. The purpose of this study was to determine how far along a 100 km river course that hormones could be detected after contamination with sewage effluent or fishpond effluent. Fourteen sites in the Lower Jordan River drainage were sampled (two sites above the sewage effluent contamination, eight sites below the contamination and four tributaries) before and after the dry season of 2002 (Spring and Fall). Samples were tested for testosterone, estrogen (estrone and estradiol combined), estriol, ethinylestradiol, ammonia and fecal coli. It was found that the fecal coli count dropped exponentially (from 250,000 to 60/100 ml3) and the ammonia dropped from 15 to less than 1mg/l over the initial 25 km stretch. Over the same stretch, the hormone values declined by half from their maximum values for testosterone (3.3 ng/l), estriol (8.8 ng/l), ethinylestradiol (6.1 ng/l), and estrogen (4.9 ng/l). From 67 to 100 km mark, testosterone (4.8 ng/l) and estrogen (2.4 ng/l) were still elevated while ethinylestradiol and estriol were >or=1.5 ng/l. The high level of testosterone and estrogen between 67 and 100 km marks was probably due to major discharge from fishponds between 23 and 27 km marks. Levels of ethinylestradiol above 1 ng/l, a level which can affect fish, was seen in 70% (12/16) of the samples tested. The data suggest that hormones in readily measured quantities can be transported considerable distances from the source of pollution.  相似文献   

12.
Claggett, Peter R., Judy A. Okay, and Stephen V. Stehman, 2010. Monitoring Regional Riparian Forest Cover Change Using Stratified Sampling and Multiresolution Imagery. Journal of the American Water Resources Association (JAWRA) 46(2):334-343. DOI: 10.1111/j.1752-1688.2010.00424.x Abstract: The Chesapeake Bay watershed encompasses 165,760 km2 of land area with 464,098 km of rivers and streams. As part of the Chesapeake Bay restoration effort, state and federal partners have committed to restoring 26,000 miles (41,843 km) of riparian forest buffers. Monitoring trends in riparian forest buffers over large areas is necessary to evaluate the efficacy of these restoration efforts. A sampling approach for estimating change in riparian forest cover from 1993/1994 to 2005 was developed and implemented in Anne Arundel County, Maryland, to exemplify a method that could be applied throughout the Bay watershed. All stream reaches in the county were stratified using forest cover change derived from Landsat imagery. A stratified random sample of 219 reaches was selected and forest cover change within the riparian buffer of each sampled reach was interpreted from high-resolution aerial photography. The estimated footprint of gross change in riparian forest cover (i.e., the sum of gross gain and gross loss) for the county was 1.83% (SE = 0.22%). Stratified sampling taking advantage of a priori knowledge of locations of change proved to be a practical and efficient protocol for estimating riparian forest buffer change at the county scale and the protocol would readily extend to much broader scale monitoring.  相似文献   

13.
Abstract: The two main rivers of southeast Texas: Guadalupe and San Antonio have shown high temporal increase in bacteria concentration during the last decade. The SPAtially Referenced Regression On Watershed (SPARROW) attributes model, developed by the U.S. Geological Survey (USGS), has been applied to predict the fluxes and concentrations of contaminants in unmonitored streams and to identify the sources of these contaminants. This model identifies every reach as a basic network unit to distribute the sources, delivery, and attenuation factors. The model is data intensive and implements nonlinear regression to solve the parsimonious relations for describing various watershed processes. This study explored watershed and hydrological characteristics (land uses, precipitation, human and animal population, point sources, areal hydraulic load and drainage density, etc.) as the probable sources and delivery mechanisms of waterborne pathogens and their indicator (Escherichia coli [E. coli]) in the Guadalupe and San Antonio River basins. The effect of using various statistical indices for model selection on the final model’s ability to explain the various E. coli sources and transport processes was also analyzed.  相似文献   

14.
This paper presents an analysis of the occurrence and uncertainty of source-specific Bacteroides and Escherichia coli in a stream in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region during baseflow conditions. The objectives of the study were to evaluate the occurrence, hydrologic significance, and source of fecal mass in the stream using assays for total Bacteroides (AllBac) and bovine-specific Bacteroides (BoBac), and then to compare these measurements with E. coli densities and loads. Samples were collected during baseflow conditions over several months at seven different main channel sites in the Stock Creek watershed, a 49.3 km2 basin located in Knoxville, TN (USA). We determined instantaneous loads for total fecal loads, bovine fecal loads, and E. coli from measured flow rates and the representative Bacteroides fecal masses and/or E. coli densities. The study indicated a strong correlation between total fecal load (kg d(-1)), bovine fecal load (kg d(-1)), E. coli load rate (CFU d(-1)), 7-d antecedent precipitation, and turbidity. The various datasets were used to establish parameter correlations and spatial dependencies throughout the watershed. The data analysis demonstrated two prevalent patterns throughout the watershed: (i) a runoff-dominated transport and occurrence; and (ii) potential groundwater-dominated transport and occurrence.  相似文献   

15.
ABSTRACT: This study presents an application of a three‐dimensional kriging technique to estimate spatial distribution of total mercury (Hg) in the Cedar‐Ortega Rivers watershed located in the lower St. Johns River basin, Florida. The kriging procedures, including preliminary data analysis, structural data analysis and the log kriging estimation, are presented. Results show watershed wide Hg contamination of river sediment to a depth of 1.0 m. A three‐dimensional plot of Hg against the Florida Sediment Assessment Guidelines (i.e., the probable effect level or PEL) demonstrates that the Cedar River is more contaminated with Hg than the rest of the watershed. The maximum sediment depth with Hg concentrations above PEL value (0.696 mg/kg) is 1.5 m. Hg concentrations at or above this level could pose a significant hazard to aquatic organisms. Analysis of the spatial distribution of Hg in the watershed finds multiple input sources. This study suggests that there is a need to identify the major sources of Hg in the watershed, and to determine the pathways that allow Hg to enter the river.  相似文献   

16.
Recent studies suggest that host origin databases for bacterial source tracking (BST) must contain a large number of isolates because bacterial subspecies change with geography and time. A new targeted sampling protocol was developed as a prelude to BST to minimize these changes. The research was conducted on the Sapelo River, a tidal river on the Georgia coast. A general sampling of the river showed fecal enterococcal numbers ranging from <10 (below the limit of detection) to 990 colony-forming units (CFU) per 100 mL. Locations with high enterococcal numbers were combined with local knowledge to determine targeted sampling sites. Fecal enterococcal numbers around one site ranged from <10 to 24,000 CFU per 100 mL. Bacterial source tracking was conducted to determine if a wastewater treatment facility at the site was responsible for this contamination. The fecal indicator bacterium was Enterococcus faecalis. Ribotyping, automated with a RiboPrinter (DuPont Qualicon, Wilmington, DE), was the BST method. Thirty-seven ribotypes were observed among 83 Ent. faecalis isolates obtained from the Sapelo River and the wastewater lagoon. Sixteen ribotypes were associated with either the river or the lagoon, and only five ribotypes (14%) were shared. Nevertheless, these five ribotypes represented 39 of the 83 Ent. faecalis isolates, almost a majority (47%). These results suggest that the fecal contamination in the river came from the wastewater treatment facility. As a prelude to BST, targeted sampling minimized subspecies changes with geography and time, and eliminated the need for a permanent host origin database by restricting BST to a small geographic area and requiring sampling to be completed in one day.  相似文献   

17.
One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.  相似文献   

18.
Escherichia coli is a ubiquitous component of the intestinal microflora of warm-blooded animals, and is an indicator of fecal contamination of surface waters. Ribotype profiling of E. coli is one of several genotypic methods that has been developed to determine the host origin of fecal bacteria. Like most genotypic methods of source tracking, ribotyping requires a host origin database to identify environmental isolates. To determine the extent of temporal variability of ribotypes and its effect on a host origin database, E. coli isolates were obtained from fecal samples of two herds of Black Angus steers at a long-term experimental site at four sampling times from October 1999 to July 2000. Fecal samples were taken from six randomly chosen steers at each time. At a similarity index of 90% as calculated by unweighted pair-group method using arithmetic averages (UPGMA), 240 ribotypes were identified from 451 E. coli isolates. Only 20 ribotypes (8.3%), comprising 33% of the total isolates, were shared among sampling times and were considered resident ribotypes. Two of the twenty resident ribotypes appeared at three sampling times, and the remaining eighteen appeared at two. The majority of the ribotypes, therefore, were transient and unique to each sampling time and steer. Both the apparent turnover of E. coli ribotypes and a clonal diversity index of 0.97 (indicative of extensive ribotype variability) suggest the necessity of ribotyping a large number E. coli isolates per host to establish a host origin database that is independent of temporal variability, or complete enough to be effective.  相似文献   

19.
A wastewater model was applied to the Potomac River watershed to provide (i) a means to identify streams with a high likelihood of carrying elevated effluent-derived contaminants and (ii) risk assessments to aquatic life and drinking water. The model linked effluent discharges along stream networks, accumulated wastewater, and predicted contaminant loads of municipal wastewater constituents while accounting for instream dilution and attenuation. Simulations using 2016 data suggested that nearly 30% (8281 km) of streams were wastewater impacted. Low- to medium-order streams had the largest range of accumulated wastewater (ACCWW%) values. ACCWW% exceeded a 1% threshold at >39% of drinking-water intakes (varied by temporal condition). Risk assessments of municipal wastewater-contaminant mixtures indicated that 22% (1479 km) of streams impacted by municipal wastewater (5.5% of all reaches modeled) may pose high risk to aquatic organisms under mean-annual conditions, with fish more susceptible to chronic-exposure effects relative to other taxa. Risk varied temporally and by stream order, with the greatest risk occurring in the summer in small streams. These findings suggest that wastewater may be an important factor contributing to environmental degradation in the Potomac River watershed.  相似文献   

20.
ABSTRACT: The South Prong watershed is a major tributary system of the Sebastian River and adjacent Indian River Lagoon. Continued urbanization of the Sebastian River drainage basin and other watersheds of the Indian River Lagoon is expected to increase runoff and nonpoint source pollutant loads. The St. Johns River Water Management District developed watershed simulation models to estimate potential impacts on the ecological systems of receiving waters and to assist planners in devising strategies to prevent further degradation of water resources. In the South Prong system, a storm water sampling program was carried out to calibrate the water quality components of the watershed model for total suspended solids (TSS), total phosphorous (TP), and total nitrogen (TN). During the period of May to November 1999, water quality and flow data were collected at three locations within the watershed. Two of the sampling stations were located at the downstream end of major watercourses. The third station was located at the watershed outlet. Five storm events were sampled and measured at each station. Sampling was conducted at appropriate intervals to represent the rising limb, peak, and recession limb of each storm event. The simulations were handled by HSPF (Hydrologic Simulation Program‐Fortran). Results include calibration of the hydrology and calibration of the individual storm loads. The hydrologic calibration was continuous over the period 1994 through 1999. Simulated storm runoff, storm loads, and event mean concentrations were compared with their corresponding observed values. The hydrologic calibration showed good results. The outcome of the individual storm calibrations was mixed. Overall, however, the simulated storm loads agreed reasonably well with measured loads for a majority of the storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号