首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six sewage sludges from five sewage treatment plants in Australia were incubated for up to 21 months. Carbon losses at the end of the 21-mo incubation varied substantially. The remaining organic matter was isolated by treatment with hydrofluoric acid (HF) and characterized using a range of solid-state (13)C nuclear magnetic resonance (NMR) spectroscopic techniques. By every measure (signal distribution in cross polarization [CP] and Bloch decay [BD] spectra, carbon NMR observability determined by spin counting, and the appearance of proton spin relaxation editing subspectra), the chemical composition of the residual organic matter appeared to be little different from that of the original sludges, even for those sludges that experienced the greatest carbon losses. Importantly, these NMR properties distinguish sewage sludge organic matter from soil organic matter. Thus, it should be possible to follow the decomposition of sewage sludge organic matter applied to soils in the field using solid-state (13)C NMR spectroscopy.  相似文献   

2.
Several solid-state 13C nuclear magnetic resonance (NMR) techniques were used to characterize soil organic matter spiked with 13C-labeled organic compounds spanning a range of hydrophobicities (benzoic acid, benzophenone, naphthalene, phenanthrene, and palmitic acid). The chemical shifts of NMR resonances of the sorbed species were shifted by up to 3 ppm relative to those of the neat compounds. Sorption also resulted in increased resonance linewidth for the compounds containing a single 13C label, indicating the presence of a range of different chemical environments at the sites of sorption. On the other hand, sorption decreased the linewidth of the resonance of naphthalene, which was uniformly 13C-labeled. This was attributed to the removal of intermolecular 13C-13C dipolar coupling. Heterogeneity of the organic matter was demonstrated using the spectral editing technique proton spin relaxation editing (PSRE), which enabled the identification and quantification of charcoal-rich domains characterized by rapid rates of proton spin-lattice relaxation in the static frame (T1H), and humic domains characterized by slow rates of T1H relaxation. Furthermore it was demonstrated that the sorbed 13C-labeled molecules "inherit" the T1H "signature" of the organic matrix in their immediate vicinity. Thus PSRE on the spiked soils enabled evaluation of the relative affinity of the two domain types for the sorbate molecules. The charcoal-rich domains were shown to have a twofold to tenfold greater affinity for the organic compounds, with greater differences found for the more hydrophobic compounds.  相似文献   

3.
Six sewage sludges from five sewage treatment plants in Australia were characterized using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired both before and after removal of mineral components through treatment with hydrofluoric acid (HF). Carbon mass balance indicated that little organic matter was lost on HF treatment, which significantly improved NMR sensitivity and spectral resolution, and decreased acquisition time and hence cost of NMR analysis. Two NMR techniques were used, the standard cross polarization (CP) technique and Bloch decay (BD). The BD technique had not been applied previously to the analysis of sewage sludge. For each sludge sample, both before and after HF treatment, the BD spectrum contained significantly more alkyl carbon. Spin counting, another technique applied to sewage sludge here for the first time, showed that the BD spectra of the HF-treated sludges were quantitative, while approximately 30% of the CP NMR signal went undetected. The discrepancy between CP and BD spectra was attributed to the presence of alkyl carbon with such high molecular mobility that the efficiency of cross polarization is affected. This study shows that sewage sludge organic matter is significantly different in chemistry to soil organic matter and has implications for the application of sewage sludge to agricultural land.  相似文献   

4.
Seventeen different wastewater sludges were characterized using both chemical and organic matter fractionation methods (water extraction, Van Soest method, and acid hydrolysis) and 6-mo incubation studies to assess their decomposition in soil. Simple correlation and multiple factor analysis (MFA) were then performed to establish relationships between composition and C and N mineralization of sludges. Carbon and N concentrations covered a wide range of values, but organic carbon (C(o)) to organic nitrogen (N(o)) ratios were relatively low (from 5 to 19). Carbon and N were mainly distributed in the most soluble fractions of the Van Soest method and in the water-insoluble fraction at 100 degrees C. Carbon mineralization varied from 180 to 661 g C kg(-1) organic C added during the 168-d incubation. The addition of sludges led to different inorganic N dynamics: from -3.3 to +120.0 g N kg(-1) sludge organic C mineralized after the 168-d incubation. Fractionation studies showed that the most discriminating method was acid hydrolysis. Carbon mineralization was linked with the proportion of sludge N and C present in the lignin-like fraction (r = -0.68 and -0.65, respectively). Significant relationships were established between N mineralization and N(o) to C(o) ratio (0.88 < r < 0.95) and the C(o) to N(o) ratio of sludges, the C to N ratio of the soluble fraction obtained by the Van Soest method, the water-soluble fraction at 100 degrees C, and the C and N present in the acid-hydrolyzable fraction. Finally, multiple factor analysis also enabled establishing a sludge typology using five clusters based on composition and mineralization characteristics.  相似文献   

5.
The effects of paramagnetic species on solid state 13C nuclear magnetic resonance (NMR) spectra were quantified in a series of doping experiments. The degree of signal loss caused by paramagnetic metals was shown to depend not only on the quantity, but also on the nature of the paramagnetic species, as well as the intimacy of contact with the organic substrate and the type of NMR experiment. Two mechanisms of signal loss were distinguished--signal loss via loss of magnetic field homogeneity, which affects all 13C nuclei in a sample, and signal loss via interaction between electronic and nuclear spins, the effects of which were localized to the close environment of the paramagnetic species. Loss of field homogeneity is important for manganese species, but not for copper species, and is equally important for both cross polarization and Bloch decay experiments. The interaction between electronic and nuclear spins is highly dependent on the spin-lattice relaxation rate constant of the free electron (T1e), as cations with very short T1e values (e.g., Pr3+) cause less signal loss than cations with longer T1e values (e.g., Cu2+, Mn2+). Cross polarization spectra are shown to be more susceptible than Bloch decay spectra to this mechanism of signal loss. Signal loss and increased relaxation rates brought about by paramagnetic species can be used to provide information on soil organic matter (SOM) heterogeneity in the submicron range. This is demonstrated for SOM doped with paramagnetic cations where selective signal loss and increased relaxation rates are used to determine the nature of cation exchange sites.  相似文献   

6.
In this paper, we demonstrate that the rheological behavior of pasty sewage sludges, regardless of origin, treatment or composition, follows a Herschel-Bulkley model. The yield stress and solid volume fraction are found to be the only two distinctive rheological characteristics of these materials. By scaling the shear rate and the shear stress with two parameters depending only on the yield stress and the solid fraction, the flow curves of 48 pasty sludges all fall along a unique dimensionless master curve. This result may be used in practice to determine, from simple, independent measurements, the rheological behavior of any pasty sludge: the yield stress can be measured with the help of the 'slump test' and the solid concentration determined from the organic and mineral matter contents. The results obtained with this technique are in very good agreement with those obtained by direct rheometry.  相似文献   

7.
Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9233mgkg(-1)drywt. (average 7347mgkg(-1)drywt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1452mgkg(-1)drywt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.  相似文献   

8.
Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes.  相似文献   

9.
This work shows the applicability of two-dimensional (2D) (1)H-(13)C heteronuclear correlation (HETCOR) nuclear magnetic resonance (NMR) spectroscopy to the characterization of whole soils. A combination of different mixing times and cross polarization (CP) methods, namely Lee-Goldberg (LG)-CP and Ramp-CP are shown to afford, for the first time, intra- and inter- molecular connectivities, allowing for molecular assemblage information to be obtained on a whole soil. Our results show that, for the brackish marsh histosol under study, two isolated domains could be detected. The first domain consists of O-alkyl and aromatic moieties (lignocellulose material), while the second domain is comprised of alkyl type moieties (cuticular material). The role of these domains is discussed in terms of hydrophobic organic compound sorption within soil organic matter (SOM), including the possible effects of wetting and drying cycles.  相似文献   

10.
Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges.  相似文献   

11.
Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.  相似文献   

12.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

13.
The rise in aluminium demand in the world has significantly increased the generation of bauxite residue which occupies huge areas of land worldwide. Direct revegetation of residue storage areas has been unsuccessful because of the high alkalinity and salinity, and poor nutrient contents of the fine residue (red mud). This paper describes glasshouse and field experiments evaluating the potential use of sewage sludge as an organic ameliorant for gypsum amended red mud. The growth of Agropyron elongatum in red mud receiving gypsum (0 and 38.5 t ha−1) and sewage sludge (0, 38.5 and 77 t ha−1) amendment was assessed in a glasshouse study. Leachate and soil analyses revealed that gypsum was effective in reducing the pH, EC and ESP of red mud, while sewage sludge gave additional reductions in EC, Na and ESP. No evidence of any significant increases in heavy metal contents were observed in the leachates following sewage sludge amendment. However, soil Al contents were more available in red mud receiving only sewage sludge treatment. Sewage sludge amendment significantly increased dry weight yield and provided sufficient nutrients for plant growth except K which was marginal. No heavy metal accumulation was observed in Agropyron. Following that, a field experiment was performed having red mud amended with sewage sludge (38.5, 77 and 154 t ha−1) and gypsum (38.5 and 77 t ha−1) to evaluate their effects on soil physical properties of red mud. Sewage sludge significantly reduced soil bulk density (25%) and particle density (9%) and increased the total porosity of red mud (8%). Hydraulic conductivity also increased from 1.5 to 23 × 10−5 m s−1. Plant cover percentage and dry weight yield of Agropyron increased with an increase in gypsum and sewage sludge amendment. The results confirm that sewage sludge is effective in improving both soil structure and nutrient status of gypsum amended red mud. The use of sewage sludge for red mud revegetation provides not just an option for sludge disposal, but also a cost effective revegetation strategy for bauxite refining industry.  相似文献   

14.
Biosolids are effective forest fertilizers. In order to facilitate their use it is important that one be able to predict the amount and rate of mineralization of nutrients, particularly nitrogen, and the relationship between substrate chemistry and N release. We examined the relationships between substrate quality and nitrogen release in a variety of organic materials. Rates of decomposition and net N mineralization from four biosolids, wheat straw, paper fines, and Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] needle litter were measured during 391-d incubations in a greenhouse, and at two field sites in wet coastal and dry interior forests. Decomposition rates were best predicted by a model incorporating the ratio of carbon to organic matter. The decomposition model extrapolated well to the field when site-specific correction factors were applied. There was a weak relationship between rates of decomposition and net N mineralization. Rates of net N mineralization were best predicted by a model incorporating the initial organic N concentration and the proportion of phenolic C determined from solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The mineralization model extrapolated less well to the field, but the effect of substrate chemistry was still apparent. Among the four biosolids there was a strong correlation between organic N concentration and indices or protein determined from 13C NMR, suggesting that these protein indices may be useful for predicting N mineralization from biosolids. There was some evidence that the protein content and N mineralization in biosolids may be predictable from the sewage treatment process employed.  相似文献   

15.
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils.  相似文献   

16.
Environmental and health problems associated with the use of digested sewage sludge hinder its application and encourage the introduction of additional treatments such as composting and thermal drying. The aim of this paper is to assess the possibility of using three different types of sewage sludge (digested, composted and thermally dried) to improve soil fertility and enhance the transformation of an unproductive shrub land into a Mediterranean dehesa for grazing purposes and also to reduce wildfire risk. In total, 10t ha(-1) of dry matter of three types of sewage sludge were spread on the soil surface of 4x5m field plots, and then seeded with a mixture of grasses. Effects on soil fertility and plant growth were monitored over 2 years. The results show that all three types of sludge application had a significant effect on vegetation cover, herbaceous biomass (2767.7+/-716.1 and 1735.0+/-299.7kgha(-1) for digested sludge amended and control plots, respectively) and tree growth (0.41+/-0.108cmyear(-1) on amended trees, 14.6% more than control trees). This study proposes the use of multi-criteria analysis to identify the most suitable fertilization alternatives and to assist in the decision-making process of sludge recycling. Because of the high degree of uncertainty and conflicting objectives associated with these decisions, multi-criteria evaluation tools make a valuable contribution to decision-making processes concerning sewage sludge applications. According to multi-criteria results, the composted sludge alternative is the most suitable. This is because all the objectives are achieved: an improvement in the properties and functions of the soil with a positive vegetation response as well as minimal economic cost and risk of toxicity.  相似文献   

17.
A sequential extraction procedure was applied to two anaerobic methanogenic sludges (Eerbeek and Nedalco) to examine the speciation of micro- and macronutrients in the sludges after cobalt sorption by exposing the sludge to a 1 mM Co solution for 4 d at pH 7 and 30 degrees C. The effect of different physicochemical conditions on cobalt sorption was studied as well: effect of pH (6-8), effect of competition by a second trace element (Ni or Fe), modification of the granular matrix by glutaraldehyde or heat treatment, and EDTA (ethylenediaminetetraacetic acid) addition. Sorbed Co was found to distribute between the carbonates, organic matter + sulfides, and residual fractions. Cobalt adsorption resulted in an antagonistic interaction with other metals present in the granular matrix, evidenced by the solubilization of other trace elements (e.g., Ni, Cu, and Zn) as well as macronutrients (especially Ca and Fe). Modification of the sludge matrix by glutaraldehyde or heat treatment, or exposure to EDTA, led to serious modifications of the Co sorption capacity and strong interactions with multivalent cations (i.e., Ca(2+) and Fe(2+)).  相似文献   

18.
Several studies emphasize the importance of soil organic matter characteristics in hydrophobic contaminant sorption and outline the strong dependence of sorption on organic matter aromaticity. In this study, the role of organic matter aromaticity in phenanthrene sorption was investigated using humic acids (HAs) from compost, peat, and soil that were structurally modified by bleaching, hydrolysis, oximation, and subcritical water extraction. The HAs were characterized with cross polarization magic angle spinning carbon-13 nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy and used in batch equilibrations with phenanthrene. Bleaching substantially reduced the aromaticity of the samples whereas the other treatments increased the relative aromaticity. Phenanthrene sorption increased, even though there was a substantial reduction in sorbent aromaticity with some samples. The HAs that exhibited comparable CPMAS 13C NMR spectra and aromaticity did not behave similarly with respect to phenanthrene sorption. When the sorption data (K(oc) values) were correlated to sample aromaticity, the correlation coefficients (r2) did not exceed 0.39. Comparisons with the atomic H to C ratio provided slightly better r2 values (up to 0.54). This study demonstrates that macroscopic sorbent characteristics could not explain the observed phenanthrene sorption coefficients, aliphatic structural components of HAs can contribute appreciably to phenanthrene sorption, and organic matter physical conformation may regulate access to organic matter structures. Therefore, the use of only macroscopic sorbent properties, such as aromaticity, to predict and rationalize sorption values cannot solely be used to explain the behavior of organic contaminants in soil environments.  相似文献   

19.
Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution.  相似文献   

20.
Landfill sites are potential sources of hazardous emissions by degradation and transformation processes of waste organic matter. Its chemical composition and microbial degradability are key factors for risk management, after-care, and estimation of potential emissions. The aim of the study is to provide information about composition and extent of transformation of waste organic matter in four landfill sites in Bavaria, Southern Germany by means of (13)C NMR spectroscopy, acid-hydrolyzable carbohydrates, chloroform-methanol extractable lipids, acid-hydrolyzable proteins, and lignin compounds after CuO oxidation. Ten samples of about 20 to 25 yr, 15 to 20 yr, and 5 to 10 yr of deposition each were taken at 2 m depth intervals by grab drilling till 10-m depth. Increasing temperatures from about 15 degrees C at 2-m depth to >40 degrees C at 10-m depth are found at some of the sites, representing optimum conditions for mesophile methane bacteria. Moisture contents of 160 to 310 g kg(-1) (oven dry), however, provide limiting conditions for anaerobic biodecay. Spectroscopic and chemical variables generally indicate a low extent of biodegradation and transformation at all sites despite a considerable heterogeneity of the samples. Independent of the time and depth of deposition more than 50% of the carbohydrate fraction of the waste organic matter provide a high potential for methane emissions and on-site energy production. There was no significant accumulation of long-chain organic and aromatic compounds, and of lignin degradation products even after more than 25 yr of rotting indicating higher extent of decomposition or stabilization of the waste organic matter. Installation of seepage water cleaning and recirculation systems are recommended to increase suboptimal moisture contents with respect to microbial methanogenesis, energy production, and long-term stabilization of municipal solid waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号