首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: This paper focuses on the development and testing of a mathematical model of an emergency ground water supply operated principally during periods of low streamflow. The process of ground water withdrawal and recharge is simulated taking account of streamflow, water demand, evapotranspiration, natural and artificial recharge and increased evapotranspiration due to artificial recharge, ground water pumpage, and streamflow contribution to pumped water. The model determines whether natural recharge is possible in less time than the return period of drought and also whether artificial recharge is needed. By simulating operation over a long period of time, the model can examine different droughts of short and long duration and can test the operating rules for ground water storage development in an area. Submodels analyze the components of the operating process including ground water flow into the stream, seepage losses, stream portion of well discharge due to induced infiltration and recharge from rainfall or water spreading. The model has been tested for areas in the humid northeastern United States.  相似文献   

2.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   

3.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   

4.
ABSTRACT: Santa Fe Country, New Mexico, has adopted a land-use policy in which zoning densities provide a balance between the water use on a parcel of land and the water supply available bencath that land. In two of four mapped hydrologic zones, ground water in storage will be allowed to be mined to exhaustion in 100 years (40 years in urban areas). Elsewhere, the policy is for a steady state with use balanced by recharge. Equations to determine storage or recharge can be solved using site specific data or regional estimates of hydrologic conditions. Substantial reductions in the lot size requirements are allowed if water conservation convenants are adopted. Public acceptance indicates that the policy successfully integrates technical and political concerns. It is simple to administer, yet reflects widely expressed public goals and values.  相似文献   

5.
ABSTRACT: The geochemistry and nature of the flow of ground water not only control the supply potential but constitute clues to the whole geology of an area. A study has been made of the largest available assemblage of data from 161 wells for the Island of Montreal collected by the Geological Survey of Canada in 1951–53. Data indicated that the system is generally subartesian, flowing from the principal topographically high areas towards the shores of the Island. As the probable use is about 13% of the estimated recharge of 140 million liters per day, most wells could be supplied by local recharge. The study has confirmed the predominance of calcium bicarbonate ground water from the carbonate sequence. The waters appeared to be saturated with respect to CaCO3 in all but 10 wells. The presence of other types of waters suggests the effects of the igneous intrusions of the area, the post-glacial marine submergence and the upward movement of waters from deep sources through fault and other structural zones. Confirmation of the significant variations in chemical composition in some neighboring wells indicated the future need for repetitive sampling from specific horizons for chemical and isotopic analyses.  相似文献   

6.
From 1971-1980, studies were conducted at Fresno, California, to identify and quantify, where possible, the soil and water chemistry, subsurface geologic, hydrologic, biologic, and operational factors that determine the long term (10-year) effectiveness of basin type artificial ground water recharge through alluvial soils. This paper updates previous findings and refers to publications that describe the geology beneath the basins and regional geology that determine the transmission and storage properties for local ground water management and chemical quality enhancement. High quality irrigation water from the Kings River was used for recharge. Construction and land costs for the present expanded facility 83 ha (205.2 ac) using three parcels of land were $1,457,100. The nine-year annual mean costs for only canal water, maintenance, and operation were $110.42/ha·m ($13.62/ac·ft) based on an average recharge rate of 1338 ha·m/yr (10,848 ac·ft/yr) at 86 percent facility efficiency. The measured end of season recharge rate averaged 14.97 ± 0.24 cm/day. The 10-year mean actual recharge rate based on actual water delivered, total ponded area, and total days of recharge was 12.1 cm/day.  相似文献   

7.
ABSTRACT: Ground water flow and supply at the Whiteshell Research Area (WRA) in southeastern Manitoba and the advective movement of contaminants from a hypothetical nuclear fuel waste disposal vault to the adjacent biosphere and a nearby ground water supply well are simulated using finite-element modeling and numerical particle-tracking technique. The hypothetical vault is located at a depth of 500 m, below the water table, in low-permeability plutonic rock of the Canadian Shield. The rock mass is intersected by high-permeability fracture zones (aquifers), which also act as conduits for vault contaminants to migrate to the ground surface. The ground water resource is, therefore, limited in quantity and quality and should be explored with care. A 30 m deep well, which pumps water at a rate of 120 m3/yr from a low-dipping fracture zone, LD1, reduces natural discharge from the system to augment natural recharge. At this pumping rate, a 100 m or 200 m deep well neither reduces discharge nor induces recharge into the system. Thus, at the WRA, a 30 m deep domestic water supply well best meets the water requirements of a one-person household at the rate of 120 m3/yr. The 100 m and 200 m wells best meet the requirements of a family of six and a family of six with light irrigation, respectively, without capturing contaminants’pathways from the vault to the ground surface. By virtue of the proximity of the 200 m well intake to the hypothetical vault, this well performs best as a purge well at pumping rates of 0,000 m3/yr and greater. Finite-element modeling is useful in evaluating the water supply potential of a fractured rock environment in which a nuclear waste disposal vault is proposed to be sited.  相似文献   

8.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

9.
The increasing need for water has increased interest in artificial recharge by water-management agencies. An evaluation of current knowledge of processes and problems of artificial recharge indicates that a great deal of additional research is necessary before recharge feasibility can be evaluated in most situations. Experience in using recharge wells on the Southern High Plains of New Mexico and Texas indicates success when using good quality water, and failure when recharge water contains high concentrations of particulate matter. Surface spreading is a more suitable method when water has a high sediment content, but may not be feasible in some hydrogeologic situations. Theoretically, well construction is important to the success of injection recharge operations, but little experimental work exists to support this view. Results of recharge experiments on the Southern High Plains support these conclusions.  相似文献   

10.
ABSTRACT: The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the Nation for waste water reuse. Overriding all of these conditions is the long-term inadequacy of the existing water supplies. The Salt River Valley has a ground water overdraft of about 700,000 acre feet per year. To help alleviate this situation, the Corps of Engineers in conjunction with the MAG 208 is looking at ways to reuse a projected 2020 waste water flow of 340,000 acre feet per year. Reuse options identified include ground water recharge, agricultural irrigation, turf irrigation, recreational lakes, fish and wildlife habitats, and industrial cooling. These look nice on paper but before they can be implemented, some hard questions have to be answered, such as: How acceptable are local treatment plants when 15 years ago there was a major push to eliminate local plants; is the Phoenix area ready for reuse in urban areas; what are people willing to pay for water; who benefits if a city goes to ground water recharge; how much agriculture will be left in the area by 2020? These and other questions must be resolved if reuse is to become a viable option in water resource planning in the Phoenix area. Summary. Large scale reuse of waste water conforms with the national goal of better resource management through recycling. The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the nation for waste water reuse. Some of the most notable conditions are: the existence of a large and rapidly growing urban area which is in the process of planning for future waste water management systems; the existence of agricultural areas which are projected to be farmed well into the future, and the existence of constructed and planned major recreational systems such as Indian Bend Wash which can use recycled waste water; the existence of extensive depleted ground water aquifers; the need for a dependable source for the cooling of the Palo Verde Nuclear reactors; and finally, overriding all of this, the long-term inadequacy of the existing water supplies. Given this, one would expect to find total reuse within the Phoenix metropolitan area. Reuse is taking place with irrigation and nuclear power cooling to the west but there is no long term plan which looks at the Valley as a whole and considers waste water as part of the Valley's water resources. The Corps 208 plan is looking at waste water in this manner but initial analysis shows that although reuse is technically feasible there are many financial, social, institutional, and political questions still to be answered. These include: determining the value of existing diminishing water sources and what people are willing to pay for the next source of water; are people willing to identify priority uses of water for the area so that water of varying quality is put to its highest and best use; will the present institutional boundaries remain to create water-rich and water-poor areas; and will legislation be forthcoming to simplify the complex surface and ground water laws that presently exist? The Corps 208 study will not be able to answer these questions, but the goal at the moment is to identify feasible reuse systems along with decisions the public, owners, agencies, and politicians must make to select and implement them. If some sort of logical process is not developed and public awareness not increased, the chance for a long-term plan to utilize waste water as a major element in the Phoenix area water resource picture, may be missed.  相似文献   

11.
This paper seeks to identify some promising policy options which could be part of a strategic and holistic effort to address India's future water challenges. Significant increases in agricultural water productivity would be a major factor in reducing the need for developing new water sources. Crop diversification, appropriately targeted to account for the present agricultural systems and available water resources, will increase productivity. Furthermore, much more emphasis needs to be placed on effective management of the groundwater resources through renewed efforts to enhance artificial recharge and conservation. Also, efforts should be revived to improve the existing surface irrigation systems. In particular, systems could be reconfigured to provide a more reliable water supply and allow effective community level management, where appropriate. Finally, while some of the increasing demands from domestic and industrial users will be met by the development of groundwater and reallocation of water from the agricultural sector, this will not be sufficient. Given that such conditions are emerging in states with high economic growth and relatively water scarce basins, this will require the further development of water resources. In some cases, these conditions along with the demand for reliable water for high value crops, will be part of the justification for inter‐basin transfers.  相似文献   

12.
ABSTRACT: A two-layered confined-unconfined numerical model for flow and mass transport is developed for the San Jacinto Basin. The model structure is determined by the geological structure of the Basin and model parameters are calibrated using 20 years of historical records. The total number of historical head observations used for the flow model calibration is 1,117 and the total number of the estimated parameters is 91. The two-layered transport model is also calibrated using historical water quality records. Sensitivity analysis of the flow model shows that only 68 parameters (out of a total of 91) are relatively sensitive and reliable. However, the unreliable parameters (23 of them) are found to be insensitive and thus not significant to the prediction and management of conjunctive use of surface water and ground water. The developed flow model has been used to study the two proposed artificial recharge scenarios for the San Jacinto Basin. We have found that during a relatively dry condition, an artificial recharge rate of 80 acre-ft/day can be achieved during the recharge period October through January. However, for a relatively wet condition, only 80 percent of the proposed rate can be effectively stored in the Basin during these months.  相似文献   

13.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

14.
ABSTRACT: The potential for artificial ground water recharge by continuous flooding of dormant grapevines was evaluated in the San Joaquin Valley of California using the cultivar Thompson Seedless. The study was started in 1982 and was completed in 1985 after three complete flooding cycles during dormancy. An average daily rate of recharge of 80 mm/thy for a 32-day period each year was achieved through a clay loam soil. There were no adverse effects on the grapevines and yields in the flooded plots in any of the growing seasons following recharge periods. Yields were higher in the recharge plots than in the control plots in the last year of the study. We conclude that artificial ground water recharge by continuous flooding during grapevine dormancy is a viable recharge method.  相似文献   

15.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

16.
ABSTRACT: One of the most common methods of artificial recharge to the ground water is from basins. In this paper, seven analytical solutions that describe artificial recharge from basins are presented. Most of these solutions are derived by directly solving the general partial differential equation for ground water flow. The solutions differ in that they use different boundary conditions, basin shapes, and consider the nonlinearity of the artificial recharge problem differently. Use of each analytical solution is demonstrated in this paper by application to an example problem. A comparison of each analytical solution presented in this paper was made to give suggestions on their use, their ease of implementation, and their relative agreement. Although no attempt is made in the paper to conclude which analytical solution is best for all problems, some general conclusions can be stated on the applicability of the various analytical solutions. Of the analytical solutions presented in this paper, Glovers and Hantush's solutions for rectangular recharge basins are highly recommended. Baumanns solution for a circular basin also gave fairly reliable results and is very easy to evaluate numerically.  相似文献   

17.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

18.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

19.
ABSTRACT: Declining ground-water levels and spring discharges have heightened water user concerns about the sustainability of the Snake River Plain aquifer in southern Idaho. Diminished recharge from surface water irrigation and increased irrigation pumping have been depleting the aquifer at a rate of about 350,000 acre-feet/year. Previously, aquifer conditions were treated as an uncontrollable consequence of weather and development activities. With increasing competition for available water, the State appears to be progressing through a three-stage process of recharge management. The first stage is that which has occurred historically, where recharge is largely an incidental effect of surface water irrigation. The second stage is the implementation of intentional recharge with little regard to identifying or maximizing benefits. Idaho has been at this stage for the past few years. The State is entering a third stage in which recharge sites will be located and designed to meet specific water user and environmental objectives. Preliminary estimates using numerical and analytical models demonstrate that managed recharge within a few miles of the river will result in short-term increases in spring discharge. More distant recharge sites are needed to provide longer-term benefits. The primary challenge facing implementation of the managed recharge program will be the balancing of economic and environmental costs and benefits and to whom they accrue.  相似文献   

20.
ABSTRACT. The Orange County Water District has conducted studies in waste water reclamation and groundwater recharge since 1965. The work has been done in three phases: (1) Study in both laboratory and pilot-scale units on the feasibility of reclaiming trickling filter effluent for injection through wells into confined aquifers; (2) long-term injection study to determine the fate of injected reclaimed water and to observe the performance of a multi-casing injection well; (3) testing alternative treatment methods in a 25,000 gpd pilot plant to solve the water quality problems which developed during the injection study. The reclaimed trickling filter effluent was found to be injectable and did not cause excessive well clogging. The multi-casing injection wells performed very satisfactorily. The reclaimed water would be acceptable for domestic use after travel through 500 feet of a confined aquifer in that bacteria, virus and toxic material were consistently absent. However, the odor and taste which persisted in the injected reclaimed water and the high concentration of dissolved inorganics are undesirable characteristics. Methods to eliminate the odor are being tested at the present time. A cooperative project with the Office of Saline Water is under way to develop a source of desalted seawater to blend with reclaimed waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号