首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Trace element mobility in soils depends on contaminant concentration, chemical speciation, water movement, and soil matrix properties such as mineralogy, pH, and redox potential. Our objective was to characterize trace element dissolution in response to acidification of soil samples from two abandoned incinerators in the North Carolina Coastal Plain. Trace element concentrations in 11 soil samples from both sites ranged from 2 to 46 mg Cu kg(-1), 3 to 105 mg Pb kg(-1), 1 to 102 mg Zn kg(-1), 3 to 11 mg Cr kg(-1), < 0.1 to 10 mg As kg(-1), and < 0.01 to 0.9 mg Cd kg(-1). Acidified CaCl2 solutions were passed through soil columns to bring the effluent solution to approximately pH 4 during a 280-h flow period. Maximum concentrations of dissolved Cu, Pb, and Zn at the lowest pH of an experiment (pH 3.8-4.1) were 0.32 mg Cu L(-1), 0.11 mg Pb L(-1), and 1.3 mg Zn L(-1) for samples from the site with well-drained soils, and 0.25 mg Cu L(-1), 1.2 mg Pb L(-1), and 1.4 mg Zn L(-1) for samples from the site with more poorly drained soils. Dissolved Cu concentration at pH 4 increased linearly with increasing soil Cu concentration, but no such relationship was found for Zn. Dissolved concentrations of other trace elements were below our analytical detection limits. Synchrotron X-ray absorption near edge structure (XANES) spectroscopy showed that Cr and As were in their less mobile Cr(III) and As(V) oxidation states. XANES analysis of Cu and Zn on selected samples indicated an association of Cu(II) with soil organic matter and Zn(II) with Al- and Fe-oxides or franklinite.  相似文献   

2.
对多年利用矿山废水灌溉的水稻土中Pb的化学形态、植物有效态和动物/人有效态进行了分析研究。结果表明,土壤中Pb的碳酸盐结合态、可交换态、有机结合态和Fe-Mn氧化物结合态含量分别是363、338、185和155mg/kg,其总和占总Pb含量的72.70%,表明其较高的环境敏感性;动物/人有效态Pb含量为1085mg/kg。土壤有机态Pb与植物中Pb含量相关性最高,表明用有机态表征土壤Pb的植物有效态比惯常使用的DTPA态要好。植物有效态与动物/人有效态含量相比,前者为后者的17.05%,表明土壤Pb污染对当地动物/人的潜在生态危害远远大于水稻等农作物;Fe-Mn氧化物结合态Pb与植物有效态(即有机结合态)及动物/人有效态Pb相关性最好,表明该形态对土壤Pb的生物有效性具有积极作用。  相似文献   

3.
Establishment of a petroleum refinery in 1916 near the headwaters of Bayou Trepagnier with subsequent dredging of the bayou resulted in spoil banks containing high levels of Pb. A large swamp abuts the eastern bank of the bayou. Cores were taken from 15 baldcypress [Taxodium distichum (L.) Richard] trees growing in the swamp along a 610-m transect (nine trees) and a 183-m transect (six trees) running perpendicular from the spoil bank. The cores were crossdated, annual rings were measured, and 5-yr segments of the cores were prepared and analyzed for heavy metals. Soil samples were collected along one transect and analyzed for metals. Levels of Pb in Bayou Trepagnier swamp trees were compared to levels in nine baldcypress trees growing along Stinking Bayou, a reference area. During the last 100 yr, Pb in growth rings of swamp baldcypress trees averaged 8.6 mg/kg (SD 4.88) along one transect and 7.9 mg/kg (SD 5.39) along the other. Lead in the soil along the first transect dropped from >2700 mg/kg (spoil bank) to 10 mg/kg at 420 m into the swamp. Baldcypress trees growing near the refinery on the spoil bank along Bayou Trepagnier (covered in an earlier study) averaged 4.5 mg/kg Pb, and trees along Stinking Bayou averaged 2.1 mg/kg. Trees in the swamp soil with 10 to 425 mg/kg Pb concentrated much more Pb than trees growing on the heavily polluted bank. Greater uptake of Pb by trees in the swamp is discussed in terms of soil dynamics and Pb sources.  相似文献   

4.
Lead contamination at shooting range soils is of great environmental concern. This study focused on weathering of lead bullets and its effect on the environment at five outdoor shooting ranges in Florida, USA. Soil, plant, and water samples were collected from the ranges and analyzed for total Pb and/or toxicity characteristic leaching procedure (TCLP) Pb. Selected bullet and berm soil samples were mineralogically analyzed with X-ray diffraction and scanning electron microscopy. Hydrocerussite [Pb3(CO3)2(OH)2] was found in both the weathered crusts and berm soils in the shooting ranges with alkaline soil pH. For those shooting ranges with acidic soil pH, hydrocerussite, cerussite (PbCO3), and small amount of massicot (PbO) were predominantly present in the weathered crusts, but no lead carbonate mineral was found in the soils. However, hydroxypyromorphite [(Pb10(PO4)6(OH)2] was formed in a P-rich acidic soil, indicating that hydroxypyromorphite can be a stable mineral in P-rich shooting range soil. Total Pb and TCLP Pb in the soils from all five shooting ranges were significantly elevated with the highest total Pb concentration of 1.27 to 4.84% (w/w) in berm soils. Lead concentrations in most sampled soils exceeded the USEPA's critical level of 400 mg Pb kg(-1) soil. Lead was not detected in subsurface soils in most ranges except for one, where elevated Pb up to 522 mg kg(-1) was observed in the subsurface, possibly due to enhanced solubilization of organic Pb complexes at alkaline soil pH. Elevated total Pb concentrations in bermudagrass [Cynodon dactylon (L.) Pers.] (up to 806 mg kg(-1) in the aboveground parts) and in surface water (up to 289 microg L(-1)) were observed in some ranges. Ranges with high P content or high cation exchange capacity showed lower Pb mobility. Our research clearly demonstrates the importance of properly managing shooting ranges to minimize adverse effects of Pb on the environment.  相似文献   

5.
Chemical immobilization, an in situ remediation method where inexpensive chemicals are used to reduce contaminant solubility in contaminated soil, has gained attention. We investigated the effectiveness of lime-stabilized biosolid (LSB), N-Viro Soil (NV), rock phosphate (RP), and anaerobic biosolid (AB) to reduce extractability and plant and gastrointestinal (GI) bioavailability in three Cd-, Pb-, and Zn-contaminated soils from smelter sites. Treated (100 g kg(-1) soil) and control soils were incubated at 27 degrees C and -0.033 MPa (0.33 bar) water content for 90 d. The effect of soil treatment on metal extractability was evaluated by sequential extraction, on phytoavailability by a lettuce bioassay (Lactuca sativa L.), on human GI availability of Pb from soil ingestion by the Physiologically Based Extraction Test. The largest reductions in metal extractability and phytoavailability were from alkaline organic treatments (LSB and NV). Phytotoxic Zn [1188 mg Zn kg(-1) extracted with 0.5 M Ca(NO3)2] in Blackwell soil (disturbed soil) was reduced by LSB, NV, and RP to 166, 25, and 784 mg Zn kg(-1), respectively. Rock phosphate was the only treatment that reduced GI-available Pb in both gastric and intestinal solutions, 23 and 92%, respectively. Alkaline organic treatments (LSB, NV) decreases Cd transmission through the food chain pathway, whereas rock phosphate decreases risk from exposure to Pb via the soil ingestion pathway. Alkaline organic treatments can reduce human exposure to Cd and Pb by reducing Zn phytotoxicity and revegetation of contaminated sites.  相似文献   

6.
This study was conducted to determine the extent of Pb absorption into young rats (Rattus norvegicus var. Sprague-Dawley) fed untreated Pb-contaminated soil or Pb-contaminated soil treated with two different sources of P and P + Mn oxide. Data were compared from an in vitro, physiologically based extraction test (PBET) with the animal data to support the validity of the in vitro test to assess bioavailable Pb from a treated Pb-contaminated soil. Soil with a total Pb concentration of 2290 mg kg(-1) was used. Rats were fed 19 different test diets for 21 consecutive days. The test diets represented 95 g AIN93G rat meal kg(-1) diet with varying proportions of silica sand or soil to provide low, medium, or high doses of Pb from either Pb acetate, treated, or untreated soil. Blood, liver, kidney, and bone Pb concentrations were examined. For all four tissues, Pb concentrations for the Pb acetate groups were significantly higher than concentrations for all the soil groups. In general, either triple superphosphate (TSP) or phosphate rock (PR) treatments resulted in significant reductions in tissue Pb concentrations compared with untreated soil. Blood and kidney Pb concentrations for the PR + Mn oxide group were significantly lower than those of the PR group at the low and high doses. Relative bioavailability of Pb, as measured in all tissues, was significantly reduced when comparing untreated with amended soil. Correlation between the in vitro and in vivo tests, based on bone and liver tissue, showed that the in vitro test is successful at predicting Pb bioavailability.  相似文献   

7.
The effects of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) on the enzymatic activities of a Typic Xerofluvent soil polluted with Pb were studied in the laboratory. Three hundred grams of sieved soil (<2 mm) were mixed with PM at a rate of 10% or CCGC at a rate of 17.2%, applying to the soil the same amount of organic matter with each organic amendment. Urease, protease-BBA, beta-glucosidase, alkaline phosphatase, and arylsulfatase activities were measured at four different incubation times (1, 7, 15, and 45 d) in soils containing seven concentrations (100, 250, 500, 1000, 2500, 5000, and 8000 mg kg-1) of Pb, and in the same soils amended with CCGC and PM. In all treatments and incubation times, the inhibition percentage of soil enzyme activities by Pb was lower in soils amended with the PM and CCGC than in nonamended soils, and it differed with the organic amendment. In this respect, the in the 8000 mg Pb kg-1 treatment at the end of the incubation period, the protease-BBA activity inhibition percentage was lower (14.7 and 33.9% lower, respectively) in CCGC- than in PM-amended soils. Since the adsorption capacity of Pb was higher in CCGC- than the PM-amended soils, the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with Pb.  相似文献   

8.
In situ stabilization of soil lead using phosphorus   总被引:4,自引:0,他引:4  
In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2,500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5,000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2,500 to 5,000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.  相似文献   

9.
The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.  相似文献   

10.
Lead phytoextraction from contaminated soil with high-biomass plant species   总被引:5,自引:0,他引:5  
In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC-3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb-contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil-bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate-specifically adsorbed and Fe-Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one- and two-dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.  相似文献   

11.
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (alpha-Al(2)O(3)) and ferrihydrite (Fe(5)HO(8).4H(2)O). The Pb-sorbed minerals were placed in a simulated gastrointestinal tract (in vitro) to simulate ingestion of Pb-contaminated soil. The changes in Pb speciation were determined using extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge spectroscopy (XANES). Both corundum (sorption maximum of 2.13 g kg(-1)) and ferrihydrite (sorption maximum of 38.6 g kg(-1)) have been shown to sorb Pb, with ferrihydrite having a very high affinity for Pb. The gastric bioaccessible Pb for corundum was >85% for corundum when the concentration of Pb was >200 mg kg(-1). Bioaccessible Pb was not detectable at 4. However, much of the sorbed Pb will become bioaccessible under gastric conditions (pH 1.5-2.5) if this soil is ingested. Caution should be used before using these materials to remediate a soil where soil ingestion is an important exposure pathway.  相似文献   

12.
An inexpensive and effective adsorbent was developed from waste tea leaves for the dynamic uptake of Pb(II). Characterization of the adsorbents showed a clear change between physico-chemical properties of activated tea waste and simply tea waste. The purpose of this work was to evaluate the potential of activated tea waste in continuous flow removal of Pb(II) ions from synthetic aqueous effluents. The performance of the system was evaluated to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. The shape of the breakthrough curves was determined for the adsorption of Pb(II) by varying different operating parameters like hydraulic loading rate (2.3–9.17 m3/h m2), bed height (0.3–0.5 m) and feed concentration (2–10 mg/l). An attempt has also been made to model the data generated from column studies using the empirical relationship based on the Bohart–Adams model. There was an acceptable degree of agreement between the data for breakthrough time calculated from the Bohart–Adams model and the present experimental study with average absolute deviation of less than 5.0%. The activated tea waste in this study showed very good promise as compared with the other adsorbents available in the literature. The adsorbent could be suitable for repeated use (for more than four cycles) without noticeable loss of capacity.  相似文献   

13.
Effect of biosolids processing on lead bioavailability in an urban soil   总被引:3,自引:0,他引:3  
The potential for biosolids products to reduce Pb availability in soil was tested on a high Pb urban soil with biosolids from a treatment plant that used different processing technologies. High Fe biosolids compost and high Fe + lime biosolids compost from other treatment plants were also tested. Amendments were added to a Pb-contaminated soil (2000 mg kg(-1) Pb) at 100 g kg(-1) soil and incubated for 30 d. Reductions in Pb bioavailability were evaluated with both in vivo and in vitro procedures. The in vivo study entailed feeding a mixture of the Pb-contaminated soil and AIN93G Basal Mix to weanling rats. Three variations of an in vitro procedure were performed as well as conventional soil extracts [diethylenetriaminepentaacetic acid (DTPA) and Ca(NO3)2] and sequential extraction. Addition of the high Fe compost reduced the bioavailability of soil Pb (in both in vivo and in vitro studies) by 37 and 43%, respectively. Three of the four compost materials tested reduced Pb bioavailability more than 20%. The rapid in vitro (pH 2.3) data had the best correlation with the in vivo bone results (R = 0.9). In the sequential extract, changes in partitioning of Pb to Fe and Mn oxide fractions appeared to reflect the changes in in vivo Pb bioavailability. Conventional extracts showed no changes in metal availability. These results indicate that addition of 100 g kg(-1) of high Fe and Mn biosolids composts effectively reduced Pb availability in a high Pb urban soil.  相似文献   

14.
本文通过某制约厂青霉素车间排放手大量灭活性产黄青霉菌对溶液中铅的吸附研究,发现该菌体对金属离子吸附有较强的选择性,尤其对铅离子高于其它金属离子。而且被吸附的铅离子能被重新洗脱回收。  相似文献   

15.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   

16.
Bentonite clay has been used for the adsorption of Fe(II) from aqueous solutions over a concentration range of 80-200 mg/l, shaking time of 1-60 min, adsorbent dosage from 0.02 to 2 g and pH of 3. The process of uptake follows both the Langmuir and Freundlich isotherm models and also the first-order kinetics. The maximum removal (>98%) was observed at pH of 3 with initial concentration of 100 mg/l and 0.5 g of bentonite. The efficiency of Fe(II) removal was also tested using wastewater from a galvanized pipe manufacturing industry. More than 90% of Fe(II) can be effectively removed from the wastewater by using 2.0 g of the bentonite. The effect of cations (i.e. zinc, manganese, lead, cadmium, nickel, cobalt, chromium and copper) on the removal of Fe(II) was studied in the concentration range of 10-500 mg/l. All the added cations reduced the adsorption of Fe(II) at high concentrations except Zn. Column studies have also been carried out using a certain concentration of wastewater. More than 99% recovery has been achieved by using 5 g of the bentonite with 3M nitric acid solution.  相似文献   

17.
Few effective strategies exist for remediating and restoring metal-contaminated soils. We have evaluated the potential of two environmentally compatible, nondestructive, biological soil-washing agents for remediating aged, lead-contaminated soils. Two contaminated soils were washed with 10 mM rhamnolipid biosurfactant and 5.3% carboxymethyl-beta-cyclodextrin (CMCD). The metal removal efficiency of these agents was compared with 10 mM diethylenetriamine pentaacetic acid (DTPA) and 10 mM KNO3. Lead removal rates by both soil-washing agents exceeded the removal by KNO3, but were an order of magnitude less than removal by the synthetic chelator, DTPA. Analysis of soil extractions revealed that the Pb in the first soil (3780 mg kg(-1)) was primarily associated with the soluble, exchangeable, oxide, and residual fractions while the Pb in the second soil (23 900 mg kg(-1)) was found in the soluble, exchangeable, carbonate, and residual fractions. After 10 consecutive washes, rhamnolipid had removed 14.2 and 15.3% of the Pb from the first and second soils, respectively, and CMCD had removed 5 and 13.4% from the same two soils. The Pb removal rate by both agents either increased or was consistent throughout the 10 extractions, indicating a potential for continued removal with extended washing. Significant levels of Cu and Zn in both soils did not prevent Pb removal by either agent. Interestingly, the effectiveness of each agent varied as a function of Pb speciation in the soil. Rhamnolipid was more effective than CMCD in removing Pb bound to amorphous iron oxides, while both agents demonstrated similar potential for removing soluble, exchangeable, and carbonate-bound Pb. Neither agent demonstrated potential for the complete remediation of metal-contaminated soils.  相似文献   

18.
Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions.The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio.Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 °C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others.Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.  相似文献   

19.
采用土壤随机布点法,采集某钢铁工业区周边34个土壤样品,利用美国TCLP法对钢铁工业区周边土壤重金属(Cu、 Zn、 Pb、 Cd)有效态进行实验分析和生态风险评价。结果表明, Cu、 Zn、 Pb、 Cd有效态含量分别在0.87~57.7 mg/kg、5.20~1338 mg/kg、1.09~379 mg/kg、1.15×10-3~69.9×10-3 mg/kg之间,钢铁工业区土壤不同程度地受到重金属的污染,其中以Zn污染最为严重。内梅罗污染指数评价中,处于安全水平的点位仅占17.6%,受到污染的点位占55.9%。其中,轻污染占20.6%,中污染占2.9%,重污染占32.4%。  相似文献   

20.
To formulate successful phytostabilization strategies in a shooting range soil, understanding how heavy metals are immobilized at the molecular level in the rhizosphere soil is critical. Lead (Pb) speciation and solubility in rhizosphere soils of five different plant species were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. The EXAFS analysis indicated that Pb occurred as PbCO (37%), Pb sorbed to organic matter (Pb-org: 15%), and Pb sorbed to pedogenic birnessite and/or ferrihydrite (Pb-ox: 36%) in the bulk soil. Comparison of the EXAFS spectra between bulk and rhizosphere soils demonstrated notable differences in fine structure, indicating that Pb species had been modified by rhizosphere processes. The estimated proportion of PbCO (25%) in the buckwheat soil was smaller than the other rhizosphere soils (35-39%). The addition of P significantly reduced Pb solubility in the bulk and rhizosphere soil except in the rhizosphere of buckwheat, for which the Pb solubility was 10-fold greater than in the other P-amended soils. This larger solubility in the buckwheat rhizosphere could not be explained by the total Pb speciation in the soil but was presumably related to the acidifying effect of buckwheat, resulting in a decrease of the soil pH by 0.4 units. The reduced Pb solubility by P amendment resulted from the transformation of preexisting PbCO (37%) into Pb(PO)Cl (26-32%) in the bulk and rhizosphere soils. In the P-amended rhizosphere soils, Pb-org species were no longer detected, and the Pb-ox pool increased (51-57%). The present study demonstrated that rhizosphere processes modify Pb solubility and speciation in P-amended soils and that some plant species, like buckwheat, may impair the efficiency of Pb immobilization by P amendments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号