首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract: A decision support system for sustainable water resources management in a water conflict resolution framework is developed to identify and evaluate a range of acceptable alternatives for the Geum River Basin in Korea and to facilitate strategies that will result in sustainable water resource management. Working with stakeholders in a “shared vision modeling” framework, sustainable management strategies are created to illustrate system tradeoffs as well as long‐term system planning. A multi‐criterion decision‐making (MCDM) approach using subjective scales is utilized to evaluate the complex water resource allocation and management tradeoffs between stakeholders and system objectives. The procedures used in this study include the development of a “shared vision model,” a simulated decision‐making support system (as a tool for sustainable water management strategies associated with water conflicts, management options, and planning criteria), and the application of MCDM techniques for evaluating alternatives provided by the model. The research results demonstrate the utility of the sustainable water resource management model in aid of MCDM techniques in facilitating flexibility during initial stages of alternative identification and evaluation in a basin suffering from severe water conflicts.  相似文献   

2.
Waage, Marc D. and Laurna Kaatz, 2011. Nonstationary Water Planning: An Overview of Several Promising Planning Methods. Journal of the American Water Resources Association (JAWRA) 47(3):535‐540. DOI: 10.1111/j.1752‐1688.2011.00547.x Abstract: Climate change is challenging the way water utilities plan for the future. Observed warming and climate model projections now call into question the stability of future water quantity and quality. As water utilities cope with preparing for the large range of possible changes in climate and the resulting impacts on their water systems, many are searching for planning techniques to help them consider multiple possible conditions to better prepare for a different, more uncertain, future. Many utilities need these techniques because they cannot afford to delay significant decisions while waiting for scientific improvements to narrow the range of potential climate change impacts. Several promising methods are being tested in water utility planning and presented here for other water utilities to consider. The methods include traditional scenario planning, classic decision making, robust decision making, real options, and portfolio planning. Unfortunately, for utilities vulnerable to climate change impacts, there is no one‐size‐fits‐all planning solution. Every planning process must be tailored to the needs and capabilities of the individual utility.  相似文献   

3.
Participatory planning applied to water resources has sparked significant interest and debate during the last decade. Recognition that models play a significant role in the formulation and implementation of design and management strategies has encouraged the profession to consider how such models can be best implemented. Shared Vision Planning (SVP) is a disciplined planning approach that combines traditional water resources planning methodologies with innovations such as structured public participation and the use of collaborative modeling, resulting in a more complete understanding and an integrative decision support tool. This study reviews these three basic components of SVP and explains how they are incorporated into a unified planning approach. The successful application of SVP is explored in three studies involving planning challenges: the National Drought Study, the Lake Ontario‐St. Lawrence River Study, and the Apalachicola‐Chattahoochee‐Flint/Alabama‐Coosa‐Tallapoosa River Basin Study. The article concludes by summarizing the advantages and limitations of this planning approach.  相似文献   

4.
Li, Y.P. and G.H. Huang, 2011. Planning Agricultural Water Resources System Associated With Fuzzy and Random Features. Journal of the American Water Resources Association (JAWRA) 47(4):841‐860. DOI: 10.1111/j.1752‐1688.2011.00558.x Abstract: More and more regions where demand outstrips water resources availability have suffered from chronic severe shortages. It is particularly aggravated for agricultural irrigation systems where more water is necessary to support the rapidly increasing population and speedily developing economy. In this study, a two‐stage fuzzy‐stochastic programming (TFSP) method is developed for planning agricultural water resources management system in more efficient and sustainable ways. The developed method can address uncertain parameters described as probability distributions and fuzzy sets. It can also be used for analyzing various policy scenarios that are associated with different levels of economic consequences since penalties are exercised with recourse actions against any infeasibility. The developed method is applied to agricultural water‐resources management planning of the Zhangweinan River Basin, China. Solutions under various α‐cut levels and fuzzy dominance indices can be generated by solving a series of deterministic submodels, which can help determine optimized crop‐target values that could hedge appropriately against future available water levels. The results are helpful for water resources managers in not only making decisions of crop irrigation but also gaining insight into the tradeoffs between economic objective and system‐failure risk.  相似文献   

5.
As freshwater resources become more scarce and water management becomes more contentious, new planning approaches are essential to maintain ecologic, economic, and social stability. One technique involves cooperative modeling in which scientists and stakeholders work together to develop a computer simulation model to assist in planning efforts. In the Middle Rio Grande region of New Mexico, where water management is hotly debated, a stakeholder team used a system dynamics approach to create a computer simulation model to facilitate producing a regional plan. While the model itself continues to be valuable, the process for creating the model was also valuable in helping stakeholders jointly develop understanding of and approaches to addressing complex issues. In this paper, the authors document results from post‐project interviews designed to identify strengths and weaknesses of cooperative modeling; to determine if and how the model facilitated the planning process; and to solicit advice for others considering model aided planning. Modeling team members revealed that cooperative modeling did facilitate water planning. Interviewees suggested that other groups try to reach consensus on a guiding vision or philosophy for their project and recognize that cooperative modeling is time intensive. The authors also note that using cooperative modeling as a tool to build bridges between science and the public requires consistent communication about both the process and the product.  相似文献   

6.
Abstract: Declining reservoir storage has raised the specter of the first water shortage on the Lower Colorado River since the completion of Glen Canyon and Hoover Dams. This focusing event spurred modeling efforts to frame alternatives for managing the reservoir system during prolonged droughts. This paper addresses the management challenges that arise when using modeling tools to manage water scarcity under variable hydroclimatology, shifting use patterns, and institutional complexity. Assumptions specified in modeling simulations are an integral feature of public processes. The policymaking and management implications of assumptions are examined by analyzing four interacting sources of physical and institutional uncertainty: inflow (runoff), depletion (water use), operating rules, and initial reservoir conditions. A review of planning documents and model reports generated during two recent processes to plan for surplus and shortage in the Colorado River demonstrates that modeling tools become useful to stakeholders by clarifying the impacts of modeling assumptions at several temporal and spatial scales. A high reservoir storage‐to‐runoff ratio elevates the importance of assumptions regarding initial reservoir conditions over the three‐year outlook used to assess the likelihood of reaching surplus and shortage triggers. An ensemble of initial condition predictions can provide more robust initial conditions estimates. This paper concludes that water managers require model outputs that encompass a full range of future potential outcomes, including best and worst cases. Further research into methods of representing and communicating about hydrologic and institutional uncertainty in model outputs will help water managers and other stakeholders to assess tradeoffs when planning for water supply variability.  相似文献   

7.
ABSTRACT: Concentrations of atmospheric CO2 and other radiatively active trace gases have risen since the Industrial Revolution. Such atmospheric modifications can alter the global climate and hydrologic cycle, in turn affecting water resources. The clear physical and biological sensitivities of water resources to climate, the indication that climate change may be occurring, and the substantial social and economic dependencies on water resources have instigated considerable research activity in the area of potential water resource impacts. We discuss how the literature on climate change and water resources responds to three basic research needs: (1) a need for water managers to clearly describe the climatic and hydrologic statistics and characteristics needed to estimate climatic impacts on water resources, (2) a need to estimate the impacts of climate change on water resources, and (3) a need to evaluate standard water management and planning methods to determine if uncertainty regarding fundamental assumptions (e.g., hydrologic stationarity) implies that these methods should be revised. The climatic and hydrologic information needs for water resource managers can be found in a number of sources. A proliferation of impact assessments use a variety of methods for generating climate scenarios, and apply both modeling approaches and historical analyses of past responses to climate fluctuations for revealing resource or system sensitivities to climate changes. Traditional techniques of water resources planning and management have been examined, yielding, for example, suggestions for new methods for incorporating climate information in real-time water management.  相似文献   

8.
ABSTRACT: The Metropolitan Water District of Southern California has for more than 70 years shaped the development of an immense urban region. The district's current strategic planning process therefore could have substantial effects on regional water planning and management. The rate restructuring phase of the planning process has produced a multiple component, cost of service based framework. This paper describes that framework as well as some criticisms that have been directed toward it. The rate restructuring was shaped, and for a while stalled, by old disputes among member agencies over rights to water supplied by Metropolitan. That controversy has diverted attention from the resource management implications of the rate structure. This paper presents an alternative future focused approach to regional integrated water resource planning for Southern California based on projections of current trends and anticipation of future events. This discussion raises the question of how regional integrated water resources planning of this sort may proceed, and what role Metropolitan will play in that process.  相似文献   

9.
Stakhiv, Eugene Z., 2011. Pragmatic Approaches for Water Management Under Climate Change Uncertainty. Journal of the American Water Resources Association (JAWRA) 47(6):1183–1196. DOI: 10.1111/j.1752‐1688.2011.00589.x Abstract: Water resources management is in a difficult transition phase, trying to accommodate large uncertainties associated with climate change while struggling to implement a difficult set of principles and institutional changes associated with integrated water resources management. Water management is the principal medium through which projected impacts of global warming will be felt and ameliorated. Many standard hydrological practices, based on assumptions of a stationary climate, can be extended to accommodate numerous aspects of climate uncertainty. Classical engineering risk and reliability strategies developed by the water management profession to cope with contemporary climate uncertainties can also be effectively employed during this transition period, while a new family of hydrological tools and better climate change models are developed. An expansion of the concept of “robust decision making,” coupled with existing analytical tools and techniques, is the basis for a new approach advocated for planning and designing water resources infrastructure under climate uncertainty. Ultimately, it is not the tools and methods that need to be revamped as much as the suite of decision rules and evaluation principles used for project justification. They need to be aligned to be more compatible with the implications of a highly uncertain future climate trajectory, so that the hydrologic effects of that uncertainty are correctly reflected in the design of water infrastructure.  相似文献   

10.
Increasing reservoir storage is commonly proposed to mitigate increasing water demand and provide drought reserves, especially in semiarid regions such as California. This paper examines the value of expanding surface reservoir capacity in California using hydroeconomic modeling for historical conditions, a future warm‐dry climate, and California's recently adopted policy to end groundwater overdraft. Results show expanding surface storage capacity rarely provides sizable economic value in most of California. On average, expanding facilities north of California's Delta provides some benefit in 92% of 82 years modeled under historical conditions and in 61% of years modeled in a warm‐dry climate. South of California's Delta, expanding storage capacity provides no benefits in 14% of years modeled under historical conditions and 99% of years modeled with a warm‐dry climate. Results vary across facilities between and within regions. The limited benefit of surface storage capacity expansion to statewide water supply should be considered in planning California's water infrastructure.  相似文献   

11.
ABSTRACT: Access to clean and sufficient amounts of water is a critical problem in many countries. A watershed approach is vital in understanding pollution pathways affecting water resources and in developing participatory solutions. Such integration of information with participatory approaches can lead to more sustainable solutions than traditional “crisis‐to‐crisis” management approaches. This study aims at applying a watershed based joint action approach to manage water resources. Since most watersheds have urban and rural sources of pollution and a wide disparity in access to and use of water, alternative solutions need to take an integrated approach through cooperative actions. An institutional model was applied to seven subwatersheds in Honduras to evaluate various sources and effects of water contamination and water shortages. Two specific pathways of water resources degradation were studied (contamination from coffee pulp manufacturing and urban nonpoint sources) to develop alternative solutions that mitigate downstream impacts of access to clean water. A locally driven joint mechanism to reuse coffee pulp in farming systems is proposed. Such an institutional solution can maximize benefits to both farms and the coffee pulp industry. A combination of education and investment in sanitary facilities in urbanizing areas is proposed to minimize urban sources of water contamination.  相似文献   

12.
ABSTRACT: Water and energy are inextricably bound. Energy is consumed and sometimes produced by every form of water resources system. Opportunities for future development and production of energy resources abound as well as those for significant reductions in energy consumption through wise water development and management. Technological, political, social, economic and environmental factors interrelate in the energy-water mix. The role of the water resources planner will have to be expanded to include assessment of water-energy impacts in addition to traditional planning considerations. An energy conservation account may well have to be added to the dimensions of national economic development and environmental quality in water resources planning. Ways must be found to reduce amounts and rates of water used and energy consumed through new manufacturing processes, improved irrigation practices, better management, new or altered social-political-economic arrangements and other procedures. To do this will require setting priorities and making difficult management decisions. The water fraternity can play a major role in alleviating the energy crisis we now face.  相似文献   

13.
Ensuring an adequate, reliable, clean, and affordable water supply for citizens and industries requires informed, long-range water supply planning, which is critically important for water security. A balance between water supply and demand must be considered for a long-term plan. However, water demand projections are often highly uncertain. Climate change could impact the hydrologic processes, and consequently, threaten water supply. Thus, understanding the uncertainties in future water demand and climate is critical for developing a sound water supply plan. In Illinois, regional water supply planning attempts to explore the impacts of future water demand and climate on water supply using scenario analyses and hydrologic modeling. This study is aimed at developing a water supply planning framework that considers both future water demand and climate change impacts. This framework is based on the Soil and Water Assessment Tool to simulate the watershed hydrology and conduct scenario analyses that consider the uncertainties in both future water demand and climate as well as their impacts on water supply. The framework was applied to water supply planning efforts in the Kankakee River watershed. The Kankakee River watershed model was calibrated and validated to observed streamflow records at four long-term United States Geological Survey streamflow gages. Because of the many model parameters involved, the calibration process was automated and was followed by a manual refinement, resulting in good model performance. Long-range water demand projections were prepared by the Illinois State Water Survey. Six future water demand scenarios were established based on a suite of assumptions. Climate scenarios were obtained from the Coupled Model Intercomparison Projection Phase 5 datasets. Three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, are used in the study. The scenario simulation results demonstrated that climate change appears to have a greater impact on water availability in the study area than water demand. The framework developed in this study can also be used to explore the impacts of uncertainties of water demand and climate on water supply and can be extended to other regions and watersheds.  相似文献   

14.
This study focuses on the problem of most efficiently fulfilling the water requirements of society for sustainable water resources management. The goal is to coordinate effectively the social needs of the resident population with operational water resources management planning.The proposed approach consists of a pyramidal hierarchy of water resource management needs, similar to that suggested by psychologist Abraham Maslow for human social needs. The two pyramidal hierarchies can be simultaneously employed to delineate guidelines to synchronize planning for sustainable water resources development with the concerns and expectations of the resident population. In both hierarchies, higher level needs remain irrelevant and difficult to attain until lower level needs of the resident population have been fulfilled.Management planning measures employed with regard to Israel's coastal aquifer have been used to illustrate this approach. Observation of Israel's experience indicates markedly reduced effectiveness where such measures have failed to be properly synchronised with societal needs. Conversely, where hydrological management measures were successfully synchronized with societal concerns, increased efficiency towards attaining sustainable groundwater management was evident.  相似文献   

15.
Beijing's local water resources have been overexploited and the ecological and environmental pressures exceed the carrying capacity of this densely populated megacity. This article examines the current status of Beijing's water resources with respect to its industrial, residential, and eco‐environmental water usage and the challenges it may face in the near future. The article describes the context of water uses, the steps taken by Beijing to alleviate the water shortage problems, and challenges to Beijing's abilities to meet its urgent and future water needs. A multipronged strategy is proposed that aims at both the present problems and the anticipated future challenges. In particular, engineering and institutional approaches for Beijing's successful transition from overexploitation to sustainable utilization of water resources are explained. Actions include reasonable water utilization, water conservation, reclaimed wastewater, and importing water from neighboring areas. We conclude that Beijing must take additional steps in water resource management to ensure its sustainable development that involves continued urbanization sprawls and population growth. Future water resource management strategies should focus on strengthening water demand management through water conservation, efficient interbasin water transfers, use of nontraditional water resources, strategically reserving water supply, and promoting rehabilitation of the eco‐environments.  相似文献   

16.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   

17.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

18.
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.  相似文献   

19.
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach.  相似文献   

20.
One of the most challenging tasks of water supply utilities is planning the timing and quantity of new water supply sources as demand for water consumption grows. Many water supply utilities target on meeting 100% of their customers' needs based on scenario‐based deterministic demand projections numbers even though there are uncertainties in both supply and demand values. This may result in under or overly conservative approach in assessing future needs. In this article, a level‐of‐service concept is introduced to capture a utility's willingness to accept a given level of risk, plan for it, and invoke a management strategy during extreme events than build a facility to accommodate those in planning for new water supply sources. Accounting for uncertainties in both supply and demand help quantify reliability by achieving a prescribed level of service. The major benefit of such an approach for planning future water supply is that it allows policy makers to evaluate the use of adaptive water management strategies and develop supply in an incremental fashion as demand warrants it. For example, if a given level of service cannot be reliably met with the existing system at a future time t, an incremental water supply project would come online to bring the required reliability level up but no more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号