首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: The hedonic valuation method was used to quantify the impact of floodplain location on housing values in Fargo‐Moor‐head. Being located in the 100‐year floodplain lowered the home values by $8,990, and such homes were worth $10,241 less than similar homes located outside the floodplain before the major flood event of 1997. Required flood insurance premiums for these homes were determined to account for approximately 81 percent of this price depreciation. In contrast, homes in the 500‐year floodplain were worth $3,100 more than similar homes not in the floodplain. It was concluded that more disclosure is needed regarding the location of the 500‐year floodplain, and that the hedonic valuation method can be used to calculate the economic gains and losses associated with flood mitigation projects or floodplain remapping efforts that result in the reclassification of the legal floodplain status of individual homes.  相似文献   

2.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

3.
ABSTRACT: Understanding the effects of dams on the inundation regime of natural floodplain communities is critical for effective decision making on dam management or dam removal. To test the implications of hydrologic alteration by dams for floodplain natural communities, we conducted a combined field and modeling study along two reaches in the Connecticut River Rapids Macrosite (CRRM), one of the last remaining flowing water sections of the Upper Connecticut River. We surveyed multiple channel cross sections at both locations and concurrently identified and surveyed the elevations of important natural communities, native species of concern, and nonnative invasive species. Using a hydrologic model, HEC‐RAS, we routed estimated pre‐and post‐impoundment discharges of different design recurrence intervals (two year through 100 year floods) through each reach to establish corresponding reductions in elevation and effective wetted perimeter following post‐dam discharge reductions. By comparing (1) the frequency and duration of flooding of these surfaces before and after impoundment and (2) the total area flooded at different recurrence intervals, our goal was to derive a spatially explicit assessment of hydrologic alteration, directly relevant to natural floodplain communities. Post‐impoundment hydrologic alteration profoundly affected the subsequent inundation regime, and this impact was particularly true of higher floodplain terraces. These riparian communities, which were flooded, on average, every 20 to 100 years pre‐impoundment, were predicted to flood at 100 ? 100 year intervals, essentially isolating them completely from riverine influence. At the pre‐dam five to ten year floodplain elevations, we observed smaller differences in predicted flood frequency but substantial differences in the total area flooded and in the average flood duration. For floodplain forests in the Upper Connecticut River, this alteration by impoundment suggests that even if other stresses facing these communities (human development, invasive exotics) were alleviated, this may not be sufficient to restore intact natural communities. More generally, our approach provides a way to combine site specific variables with long term gage records in assessing the restorative potential of dam removal.  相似文献   

4.
Previous research found that National Flood Insurance Program (NFIP) premiums collected in some U.S. states, including California, have far exceeded damage payments. However, this finding raises the question of whether such an imbalance represents systematically good flood management or, instead, merely short-term hydrologic good luck. This study investigated patterns in flood losses on structures that pre-date and post-date the first available flood maps (“pre-Flood Insurance Rate Map [FIRM]” vs. “post-FIRM”) in California, several peer states, and nationwide. California has a larger inheritance of pre-FIRM structures than the national average, apparently reflecting development during the latter half of the 20th Century but before most Federal Emergency Management Agency (FEMA) flood maps. Pre-FIRM properties are a disproportionate cost burden on the system, and the number of pre-FIRM policies has declined over time, but only slowly. Local patterns in pre-FIRM claims suggest targeted areas for enhanced mitigation efforts, including buyouts. Conversely, we find that claims on post-FIRM policies are a reasonable metric of good floodplain management and enforcement, and California's 38% of post-FIRM policies generated just 24% of the state's NFIP claims. Local “post-FIRM claim hotspots” suggest areas to examine more closely. California continues to be a net payer into the National Flood Insurance Program, with $102 million in payouts 2009–2018 versus $2.3 billion in premiums collected, or 4.5 cents of premiums collected for every dollar of premiums. In California, its peer states, and nationwide, future management of flood risk depends on: (1) continued investment in flood control and mitigation of existing floodplain structures, and (2) prudent planning and limitations on new floodplain and coastal development.  相似文献   

5.
Floodplain management programs have been adopted by more than 85% of local governments in the nation with designated flood hazard areas. Yet, there has been little evaluation of the influence of floodplain policies on private sector decisions. This article examines the degree to which riverine floodplain management affects purchase and mitigation decisions made by owners of developed floodplain property in ten selected cities in the United States. We find that the stringency of such policies does not lessen floodplain property buying because of the overriding importance of site amenity factors. Indeed, flood protection measures incorporated into development projects appear to add to the attractiveness of floodplain location by increasing the perceived safety from the hazard. Property owner responses to the flood hazard after occupancy involve political action more often than individual on-site mitigation. Floodplain programs only minimally encourage on-site mitigation by the owner because most owners have not experienced a flood and many are unaware of the flood threat. It is suggested that floodplain programs will be more effective in meeting their objectives if they are directed at intervention points earlier in the land conversion process.  相似文献   

6.
ABSTRACT: This work presents a flexible system called GIS‐based Flood Information System (GFIS) for floodplain modeling, flood damages calculation, and flood information support. It includes two major components, namely floodplain modeling and custom designed modules. Model parameters and input data are gathered, reviewed, and compiled using custom designed modules. Through these modules, it is possible for GFIS to control the process of flood‐plain modeling, presentation of simulation results, and calculation of flood damages. Empirical stage‐damage curves are used to calculate the flood damages. These curves were generated from stage‐damage surveys of anthropogenic structures, crops, etc., in the coastal region of a frequently flooded area in Chia‐I County, Taiwan. The average annual flood damages are calculated with exceedance probability and flood damages for the designed rainfalls of 2, 5, 10, 25, 50, 100, and 200 year recurrence intervals with a duration of 24 hours. The average annual flood depth in this study area can also be calculated using the same method. The primary advantages of GFIS are its ability to accurately predict the locations of flood area, depth, and duration; calculate flood damages in the floodplain; and compare the reduction of flood damages for flood mitigation plans.  相似文献   

7.
Abstract: The U.S. Federal Emergency Management Agency (FEMA) flood maps depict the 100‐year recurrence interval floodplain boundary as a single line. However, because of natural variability and model uncertainty, no floodplain extents can be accurately defined by a single line. This article presents a new approach to floodplain mapping that takes advantage of accepted methodologies in hydrologic and hydraulic analysis while including the effects of uncertainty. In this approach, the extents of computed floodplain boundaries are defined as a continuous map of flood probabilities, rather than as a single line. Engineers and planners can use these flood probability maps for viewing the uncertainty of a floodplain boundary at any recurrence interval. Such a flood probability map is a useful tool for visualizing the uncertainty of a floodplain boundary and represents greater honesty in engineering technologies that are used for flood mapping. While institutional barriers may prevent adoption of such definitions for use in graduated flood insurance rates (as most other insurance industries use to account for relative risks), the methods open the door technically to such a reality.  相似文献   

8.
Coastal wetlands are a valuable resource to North Carolina, USA, representing important habitat for marine organisms and providing flood control areas and buffer zones from marine storms. An analysis of wetland development trends in coastal North Carolina from 1970 to 1984 was conducted using over 3000 files containing 15 years of permitting records. The total amount of coastal wetland area altered due to authorized development under the Coastal Area Management Act (CAMA), the Dredge and Fill Law, and Section 404 of the Federal Water Pollution Control Act is 1740 ha. This represents nearly 2% of the salt marsh wetlands along the coast of North Carolina. The number of permits issued steadily increased during the 1980s; however, the total amount of wetland loss decreased each year. A few large projects in the early 1970s accounted for nearly 70% of all wetland area developed during the 15-year period. Nearly two-thirds of all projects involving wetland destruction involved impacts on high marsh ecosystems. Bulkheads, canals, and filling activities made up 80% of the projects requiring permits; 62% of the permits were issued to private landowners, but this group accounted for only 16% of the losses of wetland area. Utility companies, which accounted for less than 1% of the permits issued, were responsible for 46% of the permitted wetland loss during the 15-year study period. Future studies should address agriculture and forestry practices which are exempt under CAMA laws and therefore their effects on wetland alteration have not been quantified.  相似文献   

9.
The choice of flood control techniques in Bangladesh is reviewed in the context of a case study on the impact of a small-scale polder, the Dhaka-Narayanganj-Demra (DND) Project. The results of a questionnaire survey among the urban floodplain residents, who have settled inside the polder and a control population from outside the polder, indicate that the project has achieved significant flood alleviation but has also induced considerable environmental degradation due to stagnation of water within the enclosed embankment. The project also experienced numerous problems of structural instability of embankments during major flood events. An attempt is made to extrapolate some of these adverse environmental impacts of the polder to the compartmentalization scheme, which has been proposed by a UNDP-sponsored Flood Policy Study as an innovative technique for floodplain management in Bangladesh. The findings of the study, however, do not provide an adequate basis for assessing viability of the proposed compartmentalization scheme. Nonetheless, the study illustrates the usefulness of questionnaire surveys among floodplain residents for obtaining data for project evaluation.  相似文献   

10.
ABSTRACT: The accurate and reliable determination of floodplains, floodway boundaries, and flood water elevations are integral requirements of Flood Insurance Studies. These studies are intended to be used for determining the flood insurance rates. Therefore, the accuracy of the water surface profiles are important. To ensure the high degree of accuracy, the HUD Flood Insurance Administration has developed standards which must be met in the analysis of water surface profiles. A somewhat less accurate study is required for the preparation of Flood Emergency Plans. As part of the flood insurance studies of eight locations in the State of North Dakota, various flood hazard and floodplain information reports were reviewed. The hydrologic and hydraulic analyses, especially the computation of the 100-year water surface profiles, were completed using both simplified and complex hydraulic computation methods. Significant differences were found (1 to 3 feet) between the profiles computed by the SCS simplified method and those computed by HEC-2 computer program. However, the floodplain boundaries determined by both methods were found to be similar. Approximate methods are recommended for rapid determination of the floodplain, floodway boundaries, and inundation area mapping, while sophisticated computer programs (HEC-2) are recommended to be used for developing areas where the 100-year flood elevation has a significant impact on the cost of land development.  相似文献   

11.
ABSTRACT: A set of procedures for identifying changes in selected streamflow characteristics at sites having long‐term continuous streamflow records is illustrated by using streamflow data from the Waccamaw River at Freeland, North Carolina for the 55‐year period of 1940–1994. Data were evaluated and compared to streamflow in the adjacent Lumber River Basin to determine if changes in streamflow characteristics in the Waccamaw River were localized and possibly the result of some human activity, or consistent with regional variations. Following 1963, droughts in the Waccamaw Basin seem to have been less severe than in the Lumber Basin, and the annual one‐, seven‐, and 30‐day low flows exhibited a slightly increasing trend in the Waccamaw River. Mean daily flows in the Waccamaw River at the 90 percent exceedance level (low flows) during 1985–194, a relatively dry period, were very nearly equal to flows at the same exceedance level for 1970–1979, which represents the 10‐year period between 1940 and 1994 with the highest flows. Prior to the 1980s, flows per unit drainage area in the Waccamaw Basin were generally less than those in the Lumber Basin, but after 1980, the opposite was true. The ratio of base flow to runoff in the Waccamaw River may have changed relative to that in the Lumber River in the late 1970s. There was greater variability in Waccamaw River streamflow than in Lumber River flow, and flow variability in the Waccamaw River may have increased slightly during 1985–1994.  相似文献   

12.
Floodplain delineation may inform protection of wetland systems under local, state, or federal laws. Nationally available Federal Emergency Management Agency Flood Insurance Rate Maps (FIRMs, “100‐year floodplain” maps) focus on urban areas and higher‐order river systems, limiting utility at large scales. Few other national‐scale floodplain data are available. We acquired FIRMs for a large watershed and compared FIRMs to floodplain and integrated wetland area mapping methods based on (1) geospatial distance, (2) geomorphic setting, and (3) soil characteristics. We used observed flooding events (OFEs) with recurrence intervals of 25‐50 to >100 years to assess floodplain estimate accuracy. FIRMs accurately reflected floodplain areas based on OFEs and covered 32% of river length, whereas soil‐based mapping was not as accurate as FIRMs but characterized floodplain areas over approximately 65% of stream length. Geomorphic approaches included more areas than indicated by OFE, whereas geospatial approaches tended to cover less area. Overall, soil‐based methods have the highest utility in determining floodplains and their integrated wetland areas at large scales due to the use of nationally available data and flexibility for regional application. These findings will improve floodplain and integrated wetland system extent assessment for better management at local, state, and national scales.  相似文献   

13.
Densmore, Roseann V. and Kenneth F. Karle, 2009. Flood Effects on an Alaskan Stream Restoration Project: The Value of Long‐Term Monitoring. Journal of the American Water Resources Association (JAWRA) 45(6):1424‐1433. Abstract: On a nationwide basis, few stream restoration projects have long‐term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long‐term and event‐based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long‐term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross‐sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25‐year flood on the stream and floodplain geometry and riparian vegetation. The long‐term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.  相似文献   

14.
Abstract

What can local case studies contribute to our understanding of the processes underlying the growth in greenhouse gas emissions? Since much abatement and mitigation are local in character, it is important that policy makers identify the mix of local, national and international processes that contribute to changes in greenhouse gas emissions. Drawing upon the results of case studies in Kansas, North Carolina and Ohio, how patterns of emissions in local areas can be connected analytically to the driving forces of environmental change is demonstrated. Emissions at the local level are empirically associated with the same set of trends found at national and international scale, namely, changes in population, affluence‐consumption and technology.  相似文献   

15.
Major coastal flooding events over the last decade have led decision makers in the United States to favor structural engineering solutions as a means to protect vulnerable coastal communities from the adverse impacts of future storms. While a resistance‐based approach to flood mitigation involving large‐scale construction works may be a central component of a regional flood risk reduction strategy, it is equally important to consider the role of land use and land cover (LULC) patterns in protecting communities from floods. To date, little observational research has been conducted to quantify the effects of various LULC configurations on the amount of property damage occurring across coastal regions over time. In response, we statistically examine the impacts of LULC on observed flood damage across 2,692 watersheds bordering the Gulf of Mexico. Specifically, we analyze statistical linear regression models to isolate the influence of multiple LULC categories on over 372,000 insured flood losses claimed under the National Flood Insurance Program per year from 2001 to 2008. Results indicate that percent increase in palustrine wetlands is the equivalent to, on average, a $13,975 reduction in insured flood losses per year, per watershed. These and other results provide important insights to policy makers on how protecting specific types of LULC can help reduce adverse impacts to local communities.  相似文献   

16.
Flood inundation maps play a key role in assessment and mitigation of potential flood hazards. However, owing to high costs associated with the conventional flood mapping methods, many communities in the United States lack flood inundation maps. The objective of this study is to develop and examine an economical alternative approach to floodplain mapping using widely available soil survey geographic (SSURGO) database. In this study, floodplain maps are developed for the entire state of Indiana, and some counties in Minnesota, Wisconsin, and Washington states by identifying flood‐prone soil map units based on their attributes. For validation, the flood extents obtained from SSURGO database are compared with the extents from other floodplain maps such as the Federal Emergency Management Agency issued flood insurance rate maps (FIRMs), flood extents observed during past floods, and flood maps derived using digital elevation models. In general, SSURGO‐based floodplain maps (SFMs) are largely in agreement with other flood inundation maps. Specifically, the floodplain extents from SFMs cover 78‐95% area compared to FIRMs and observed flood extents. Thus, albeit with a slight loss in accuracy, the SSURGO approach offers an economical and fast alternative for floodplain mapping. In particular, it has potentially high utility in areas where no detailed flood studies have been conducted.  相似文献   

17.
River channel geometry is an important input to hydraulic and hydrologic models. Traditional approaches to quantify river geometry have involved surveyed river cross sections, which cannot be extended to ungaged basins. In this paper, we describe a method for developing a synthetic rating curve to relate flow to water level in a stream reach based on reach‐averaged channel geometry properties developed using the Height above Nearest Drainage (HAND) method. HAND uses a digital elevation model (DEM) of the terrain and computes the elevation difference between each land surface cell and the stream bed cell to which it drains. Taking increments in water level in the stream, HAND defines the inundation zone and a water depth grid within this zone, and the channel characteristics are defined from this water depth grid. We apply our method to the Blanco River (Texas) and the Tar River (North Carolina) using 10‐m terrain data from the United States Geological Survey (USGS) 3D Elevation Program (3DEP) dataset. We evaluate the method's performance by comparing the reach‐average stage‐river geometry relationships and rating curves to those from calibrated Hydrologic Engineering Center's River Analysis System (HEC‐RAS) models and USGS gage observations. The results demonstrate that after some adjustment, the river geometry information and rating curves derived from HAND using national‐coverage datasets are comparable to those obtained from hydraulic models or gage measurements. We evaluate the inundation extent and show our approach is able to capture the majority of the Federal Emergency Management Agency (FEMA) 100‐year floodplain.  相似文献   

18.
Results of the establishment of a Local Flood Relations program in 1953 by TVA are discussed. In 16 years TVA has produced local floodplain information reports for 126 communities. As of September 1, 1969, 66 valley communities had adopted floodplain provisions in their zoning ordinances or subdivision regulations, or both. The local-state-Federal team approach to floodplain management is viable and any other appears to be doomed to failure. A floodplain management program can be expected to succeed as a collaborative effort at all levels of government, each playing the part and assuming the responsibilities best fitted to it. Most of us now accept that our flood problems will not be solved by engineering works alone or even in combination with upstream land management. The solution requires a linking of broad community planning with traditional engineering works. This means that the local, state, and Federal objectives and policies must be effectively coordinated. This method has been developed and satisfactorily applied in the Tennessee Valley during the past decade. The need for more effective means for coping with mounting local flood losses was recognized by the Tennessee Valley Authority and led to the establishment of its Local Flood Relations program in 1953. Since a working relationship with the people of the Valley and their state and local institutions had been carefully nurtured by TVA for over twenty years, it was only natural that the new program would also be a cooperative one.  相似文献   

19.
ABSTRACT. The article proposes the use of certain water and sewer extension pricing and investment policies. Such policies would complement an urban growth policy designed to guide the location and timing of growth in urbanizing areas. Proposed pricing policies are based upon marginal cost principles. The types of pricing policies discussed include benefit assessments, connection fees, and user charges. Proposed investment policies deal with the division of financing responsiblities between the public and private sectors. Discussion of each proposal explains the economic influence of the proposed policies upon key decision makers in the land development process. The application of proposed pricing and investment policies in the case study communities is mixed. In Knoxville, Tennessee, where pricing and investment policies reflect the proposed policies, no urban growth policy exists. In Lexington, Kentucky, mixed pricing and investment policies do not complement what is a relatively good urban growth policy. In Greensboro, North Carolina, reasonably effective pricing and investment policies complement other policies which provide some guidance to the urban growth pattern. It is hoped that the article will increase the recognition of utility pricing and investment policies as one means of implementing urban growth policy.  相似文献   

20.
The EPA’s new nonpoint source pollution control requirements will soon institutionalize urban erosion and sediment pollution control practices nationwide. The public and private sector costs and social benefits associated with North Carolina’s program (one of the strongest programs in the country in terms of implementation authority, staffing levels, and comprehensiveness of coverage) are examined to provide general policy guidance on questions relating to the likely burden the new best management practices will have on the development industry, the likely costs and benefits of such a program, and the feasibility of running a program on a cost recovery basis. We found that urban erosion and sediment control requirements were not particularly burdensome to the development industry (adding about 4% on average to development costs). Public-sector program costs ranged between $2.4 and $4.8 million in fiscal year 1989. Our contingent valuation survey suggests that urban households in North Carolina are willing to pay somewhere between $7.1 and $14.2 million a year to maintain current levels of sediment pollution control. Our benefit-cost analysis suggests that the overall ratio is likely to be positive, although a definitive figure is elusive. Lastly, we found that several North Carolina localities have cost recovery fee systems that are at least partially self-financing. This article is based on research by the authors for the North Carolina Department of Environment, Health and Natural Resources (DEHNR). The views are those of the research team and do not necessarily reflect the position of DEHNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号