首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Deckers Creek watershed in northern West Virginia (USA), containing a land area of 166 km2 (63 mi2), has a long history of industrial development and attendant environmental abuses from both land and water pollution practices. The water in Deckers Creek was sampled in 1974 at 29 locations along the main stem and resampled in 1999-2000 to determine water quality changes over this 25-year period. Water samples were analyzed for pH, acidity, alkalinity, iron, and calcium at both times, while aluminum, manganese, zinc, and fecal coliform (FC) bacteria densities were added in 1999-2000. Water at almost all sampling points showed lower acidity and metal contents in 1999-2000 compared with 1974. Water pH increased at the mouth from 5.4 in 1974 to 6.0 in 1999-2000. Acidity and iron concentrations were decreased an average of 70% in the upper stretches of the creek. However, one major untreated point source of water from an abandoned underground mining complex continues to degrade the quality of the creek in its lower stretches. In the upper section, the water quality in Deckers Creek has improved due to decreased surface and underground coal mining activities, reclamation of abandoned and recently permitted surface mined lands, and natural healing of past land use scars from timbering and mining over time. The decrease in mineral extraction activities and the reclamation of disturbed lands has occurred due to the passage and enforcement of water quality and land reclamation laws and regulations. More time and additional reclamation projects will continue to enhance the water quality in the creek. Improved water chemistry in the majority of the creek, however, shows the previously unnoticeable biological contamination from sewage inputs.  相似文献   

2.
ABSTRACT: Inputs of copper‐based crop protectants from tomato fields grown under plastic mulch agriculture (plasticulture) to an estuarine creek were investigated. Copper was measured in runoff from diverse land‐uses including conventional agriculture, plasticulture, residences, and natural areas. Water column and sediment copper concentrations were measured in plasticulture and control (nonagriculture) watersheds. Copper concentrations in plasticulture‐impacted creeks exceeded background levels episodically. High concentrations occurred during or immediately after runoff‐producing rains. Concentrations of 263 μg/L total copper and 126 μg/L dissolved copper were measured in a tidal creek affected by plasticulture; concentrations exceeded the shellfish LC50 values and the water quality criteria of 2.9 μg/L dissolved copper. Control watersheds indicated background water column levels of ≤ 4 μg/L dissolved copper with similar copper levels during periods with and without rain. The copper concentrations in tomato plasticulture field runoff itself contained up to 238 μg/L dissolved copper. Copper concentrations in runoff from other land‐uses were less than 5 μg/L dissolved copper. Creek sediment samples adjacent to a plasticulture field contained significantly higher copper concentrations than sediments taken from nonplasticulture watersheds.  相似文献   

3.
Heavy metals in the aquatic environment have, to date, come essentially from naturally occurring geochemical resources. However, this has been enhanced by anthropogenic activities such as crude oil exploration and exploitation activities, resulting in pollution in the Taylor Creek aquatic ecosystem. The catfish species Bagrus bayad and other environmental segments were collected from five selected sites along Taylor Creek, southern Nigeria, and total metal concentration determined. The concentration levels of the metals in B. bayad were higher than the values reported in the literature for fresh fish and may lead to a higher risk of harmful effects. The bivariate regression models relating metals in B. bayad and metals in the surface waters were significant (R 2 ≥ 0.9002). The log (bio-concentration factor; BCF) values of Cr and Zn in B. bayad were the highest, whereas the lowest was found for Ni. The ecological distribution of the log (BCF) values was, for all the heavy metals, moderately stable over the creek. All log-transformed bio-magnification factors (BMF) in the creek were positive, which indicates that the metal concentration was greater in B. bayad than in suspended particulate matter (SPM). The absolute log (BMF) values of heavy metals can, therefore, be ranked in order of decreasing magnitude: Cr (3.26) > Zn (2.99) > Cd (2.93) > Fe (2.76) > Pb (2.66) > Mn (2.36) > Ni (2.24). This sequence indicates that toxic metals such as Cd, Cr and Pb are undergoing significant bio-reduction from SPM to B. bayad. The degree of correlation between the metals was different in B. bayad, which suggests that the sources of the metals polluting Taylor Creek were diverse.  相似文献   

4.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

5.
Water quality criteria were developed for delivery waters to Everglades National Park. The park receives a minimum of 12.34 m3/sec (315,000 acre-ft/yr) of water from controlled sources external to its boundary. These waters often originate from areas that are or potentially are impacted from urban and agricultural developments. When, in 1970, the U.S. Congress guaranteed minimum water deliveries to Everglades National Park, it also required that these waters be of good quality.The Everglades National Park water quality data base was analyzed from 1970 to 1978 at both in-park and water delivery sites to determine the current level of delivery water quality and to select representative delivery sites. It was found that current delivery water quality was sufficiently high to be adopted as criteria against which future water quality could be compared. From the delivery sites S-12C and L-67A all data were combined from 1970–1978 for 36 parameters including macronutrients, heavy metals, and field parameters such as DO, pH, and specific conductance. Mean concentrations and upper limits were computed and tabulated for comparison during future monitoring programs. These criteria were subsequently adopted through a joint memorandum of agreement between the U.S. Army Corps of Engineers, South Florida Water Management District and the U.S. National Park Service.  相似文献   

6.
The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy’s Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water ~60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.  相似文献   

7.
Placer gold mining, which extracts gold from buried or exposed alluvia, is often conducted on or near streams. Such mining has the potential to adversely affect water quality. Other heavy metals associated with the gold (such as arsenic, cadmium, lead, zinc, and copper) may be freed to enter streams. Mercury may also enter streams if miners are using it to recover fine particles of gold. These heavy metals are toxic and thus may be harmful to the aquatic life of the streams receiving effluent or runoff from placer mines. In 1982 we sampled two streams intensively - one heavily mined and one unmined - for total recoverable arsenic, mercury, lead, zinc, and copper. Only mercury was not significantly higher in concentration in the mined streams. In 1983 we sampled two stream pairs three times, and 10 other sites at least once, for total and dissolved arsenic, cadmium, mercury, lead, zinc, and copper. Mercury and cadmium were not significantly elevated in mined streams, but the concentrations of total arsenic, lead, zinc, and copper, and dissolved arsenic and zinc were significantly higher in streams below active placer mining sites than in these that were not being mined or those that had never been mined. Additionally, total arsenic, lead, zinc, and copper and dissolved arsenic and copper became elevated after mining began in 1983 on a previously unmined stream.  相似文献   

8.
ABSTRACT: The objective of this study was to characterize the sources, concentrations, and distribution of total and methylmer‐cury in water, and channel and bank sediments of Steamboat Creek, Nevada. This information was needed to begin to assess the potential impacts of stream restoration on mercury pollution in this tributary to the Truckee River. The Truckee River flows into Pyramid Lake, a terminal water body home to one endangered and one threatened fish species, where stable pollutants will accumulate over time. Mercury in Steamboat Creek was originally derived from its headwaters, Washoe Lake, where several gold and silver mills that utilized mercury were located. In the 100 plus years since ore processing occurred, mercury‐laden alluvium has been deposited in the stream channel and on streambanks where it is available for remobilization. Total mercury concentrations measured in unfiltered water from the creek ranged from 82 to 419 ng/L, with greater than 90 percent of this mercury being particle‐bound (> 0.45 (m). Mercury in sediments ranged from 0.26 to 10.2 μg/g. Methylmercury concentrations in sediments of Steamboat Creek were highest in wetlands, lower in the stream channel, and still lower in streambank settings. Methylmercury concentrations in water were 0.63 to 1.4 ng/L. A streambank restoration plan, which includes alterations to channel geometry and wetland creation or expansion, has been initiated for the creek. Data developed indicate that streambank stabilization could reduce the mercury loading to the Creek and that wetland construction could exacerbate methylmercury production.  相似文献   

9.
Samples of coal pile runoff, Georges Creek water, and macrobenthos above and below two coal storage areas along Georges Creek, Allegany County, Maryland, were collected in July, August, and September 1982, and February and July 1983. Coal pile runoff was collected under high- and low-flow conditions. Water samples were analyzed for Hg, Zn, As, Fe, Mn, Al, SO4?2, pH, filterable and non-filterable residue, conductivity and acidity. Leachate from coal piles along Georges Creek contained high concentrations of heavy metals, particularly manganese, aluminum and zinc. Iron and sulfate were very high and the pH ranged from 1.4 to 3.1. Georges Creek water had much lower concentrations of metals, iron and sulfate and a pH of about 7.0. The distribution of macrobenthos in Georges Creek showed the effects of both runoff from coal storage piles and periodic drought. Brillouin's diversity index values were low even in areas which did not dry. Densities of tubificid worms and chironomid larvae were very high above the coal storage areas where organic inputs were high. At all the rest of the sampling stations, macroinvertebrate densities were very low. Where coal pile runoff enters Georges Creek, it compounds the effects of periodic drought and further stresses the aquatic community.  相似文献   

10.
Dissolved copper was toxic to wild rice (Zizania palustris) seedlings when exposed in water from the seed collection site of Swamp Creek, Crandon, Wisconsin, USA, and in laboratory-prepared artificial or reconstituted water. Seeds for the study were harvested, then held through a portion of dormancy, in Swamp Creek. After 60 days they were shipped to a laboratory, chilled, and tested with copper after germination. The end point of the tests was net gain in wet weight of the seedlings; additionally, a pronounced reduction in root development was observed. Using measured concentrations, the lowest no-observable-effect concentration (NOEC) in our study was 37 g/liter in Swamp Creek water and the lowest-observable-effect concentration (LOEC) was 59 g/liter. However, it appeared that there was a point at which concentrations of copper above 400 g/liter did not result in any measurable effect or exhibit a definitive dose–response. Because the results in Swamp Creek water were more relevant to the possibility of local metals additions and the association of reduced seedling growth by copper was more powerful in this water, we derived an equation to express the relationship between copper concentration and toxicity for Swamp Creek water. As an example, we would expect a 3.0% reduction in seedling growth at 5.0 g/liter copper. Seedling roots were particularly affected and the resultant plants may be less well anchored and more susceptible to dislodging than plants not exposed to copper. Further refinement of the methodology may be used to address effects of other contaminants impacting rice beds in North America. This study was conducted while the first author was employed by the U.S. Geological Survey, Mid-continent Ecological Science Center, Fort Collins, Colorado  相似文献   

11.
To assess the risk from heavy metal accumulation to insectivorous species exposed to different pollutants, shrews [Sorex araneus (Linnaeus 1758) and Sorex minutus (Linnaeus 1766)] were collected in the Olkuski Ore Region (OOR; a Zn and Cd smelter area), Legnicko-G?ogowski Copper Mine Region (LGCR; a copper ore-mining area), and Bia?owieza Forest (BF; a control area). A few sites were chosen in each region and a total of 57 animals were collected from them. The liver and kidneys were dissected from the animals, dried, and digested in a 4:1 mixture of HNO3 (nitric acid) and HClO4 (perchloric acid). Cadmium, lead, zinc, copper, and iron were determined in the samples by flame or flameless atomic absorption spectrometry. The interactions between toxic and essential metals were calculated for each tissue. The data showed that accumulation of metals by insectivores is high; shrews accumulated much higher amounts of cadmium and lead than bank voles, studied by other researchers, from the same areas. The expected high tissue accumulation of copper at LGCR and zinc at OOR was not seen, but the levels of both elements were higher in the tissues of shrews from OOR than from LGCR. The lowest copper concentrations were in the tissues of shrews from BF. The highest cadmium and lead concentrations were found in the tissues of shrews from OOR. Some significant correlations were found between the tissue concentrations of xenobiotic and essential metals (e.g., between cadmium and zinc and between lead and iron).  相似文献   

12.
ABSTRACT: Wildfires in 1988 burned over 2000 square miles of the greater Yellowstone area in Montana and Wyoming in the largest fires in the history of Yellowstone National Park (YNP). A four-year postfire study to estimate fire-related changes in suspended sediment transport on the Yellowstone River and its principal tributary in YNP, the Lamar River, benefitted from a recently completed three-year prefire baseline study. Both studies took daily depth-integrated samples from April through September. Fire-related changes in suspended sediment were distinguished from natural climatic variations by two methods: comparison of forecast postfire sediment loads estimated with prefire sediment-rating equations to measured postfire loads; and by postfire changes in suspended sediment load expressed per unit volume runoff. Both methods indicated postfire sediment increases that varied according to season. The higher elevation Lamar River basin had little postfire increase in spring snowmelt season sediment but large increases in summer sediment load. The Yellowstone River had postfire increases in sediment load for the spring but did not reflect the large summer increases of its upstream tributary. The reasons for the difference in postfire snowmelt sediment response are unclear but may relate to basin elevation differences, the effects of unburned watersheds, and cooler postfire springs. The few high streamflow snowmelt events in the postfire period mitigated postfire sediment increases.  相似文献   

13.
The concentrations of copper (Cu) and lead (Pb) in, and the biomass of, the different parts of Persicaria glabra (Willd.) Gamez and Juncellus alopecuroides (Rottb.) C.B.Cl. were evaluated while grown in pots under laboratory conditions. Cu and Pb were added as sulphates (50, 100, 200, 400 mg/kg) to the pots. Heavy metal concentrations in the plants were measured by atomic absorption spectrometry. Results reveal that the biomass of J. alopecuroides (particularly roots) was higher than P. glabra, and that the growth tendency of macrophytes decreased with increasing heavy metal concentration in the soil, while in P. glabra, biomass went on increasing with the increase in copper concentration. Heavy metal accumulation in the roots was more than in aerial parts, and, therefore, barring two exceptions, the transfer factor of heavy metals from roots to aerial parts showed as less than 1, suggesting less transfer of heavy metals from roots to aerial parts. Thus, these macrophytes are efficient accumulators of trace elements, particularly J. alopecuroides, which can be recommended for biofiltration of heavy metals from contaminated soils.  相似文献   

14.
Due to anthropogenic inputs, elevated concentrations of metals frequently occur in aquatic sediments. In order to make defensible estimates of the potential risk of metals in sediments and/or develop sediment quality criteria for metals, it is essential to identify that fraction of the total metal in the sediments that is bioavailable. Studies with a variety of benthic invertebrates indicate that interstitial (pore) water concentrations of metals correspond very well with the bioavailability of metals in test sediments. Many factors may influence pore water concentrations of metals; however, in anaerobic sediments a key phase controlling partitioning of several cationic metals (cadmium, nickel, lead, zinc, copper) into pore water is acid volatile sulfide (AVS). In this paper, we present an overview of the technical basis for predicting bioavailability of cationic metals to benthic organisms based on pore water metal concentrations and metal-AVS relationships. Included are discussions of the advantages and limitations of metal bioavailability predictions based on these parameters, relative both to site-specific assessments and the development of sediment quality criteria.  相似文献   

15.
Sediments collected from Tap Mun (within Tolo Harbour) and Yim Tin Tsai (outside Tolo Harbour) were extracted sequentially and the copper, cadmium, and chromium contents were determined. Total contents of copper, cadmium, chromium, and arsenic were also detected by acid digestion. The level of heavy metal extracted was higher in sequential extraction (which extracted all forms of metal ions) than total acid digestion. Among the four heavy metals studied, only copper showed a significantly higher (P<0.001) level in samples collected from Yim Tin Tsai (16.10 mg/kg) than that from Tap Mun (3.19 mg/kg). Such a difference in copper level is mainly attributed to the significantly higher (P<0.05) levels of copper in the organic, carbonate, and sulfide forms, whereas there was no significant difference (P>0.05) in the exchangeable and sorbed forms. Green-lipped mussel (Perna viridis) samples collected from the two sites were dissected into seven parts (gill, byssus, siphon, shell, digestive gland, soft tissue, and adductor muscle) and the concentrations of copper, cadmium, chromium, and arsenic were measured. The highest concentration of copper was obtained in the byssus. A higher concentration of copper was also noted in the mussels collected from Yim Tin Tsai than those collected from Tap Mun. No specific trend was revealed for the other metals tested. Chromium and arsenic concentrations were found to be independent of the body size of the mussels. Copper had a lower concentration in larger mussels and cadmium level was found to decrease with size. In addition, the mussels collected from Tap Mun were much larger than those collected from Yim Tin Tsai.  相似文献   

16.
ABSTRACT: Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired‐watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash‐rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76–86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate‐N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate‐N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate‐N and chloride ratios less than one in the Walnut Creek watershed and low nitrate‐N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate‐N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate‐N concentrations appear related to the percentage of row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer‐term monitoring will allow better evaluation of the impact of restoration activities on water quality.  相似文献   

17.
Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world’s remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone’s geysers extend well beyond the Park borders, and onto two “Known Geothermal Resource Areas”—Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a “Geyser Protection Area” (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone’s geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area’s “wicked” public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world’s few remaining geyser basins.  相似文献   

18.
Snowmobile use in Yellowstone National Park has been shown to impact air quality, with implications for the safety and welfare of Park staff and other Park resource values. Localized impacts have been documented at several high-use sites in the Park, but the broader spatial variability of snowmobile emissions and air quality was not understood. Measurements of 87 volatile organic compounds (VOCs) were made for ambient air sampled across the Park and West Yellowstone, Montana, during 2 days of the 2002–2003 winter use season, 1 year before the implementation of a new snowmobile policy. The data were compared with similar data from pristine West Coast sites at similar latitudes. Backward trajectories of local air masses, alkyl nitrate-parent alkane ratios, and atmospheric soundings were used to identify the VOC sources and assess their impact. Different oversnow vehicle types used in the Park were sampled to determine their relative influence on air mass pollutant composition. VOCs were of local origin and demonstrated strong spatiotemporal variability that is primarily influenced by levels of snowmobile traffic on given road segments at different times of day. High levels of snowmobile traffic in and around West Yellowstone produced consistently high levels of benzene, toluene, and carbon monoxide.  相似文献   

19.
The state of North Carolina's Department of Environment and Natural Resources (NCDENR) conducts routine water quality monitoring throughout the state to assess the health of aquatic systems. The current study reports the results of a retrospective (1990–2000) ecological risk assessment of six heavy metals (arsenic, cadmium, copper, lead, mercury, and zinc) in 17 North Carolina basins that was conducted to estimate the risk of heavy metal toxicity to freshwater organisms and assess the sufficiency of NCDENR's monitoring data to identify water-quality-related ecological threats. Acute and chronic ecotoxicological thresholds (ETs) were calculated for each metal based upon the 10th percentile of species sensitivity distributions and were normalized for water hardness. Statewide probabilities (expressed as percentages) of a random sample exceeding acute or chronic ETs among the six metals ranged from 0.01% to 12.19% and 0.76% to 21.21%, respectively, with copper having the highest and arsenic and mercury the lowest risk. Basin-specific probabilities varied significantly depending upon water hardness and presumably watershed development. Although the majority of specific sites where data were collected were at low risk for metal toxicity, some specific sites had a high probability of toxic events associated with one or more metals. Analytical detection limits for metals were frequently higher than estimated chronic ET, limiting the ability to assess the risk of chronic toxicity in soft-water basins. Results suggest risk-based criteria may be useful for assessing and validating the sufficiency of monitoring programs and prioritizing management goals.  相似文献   

20.
Effects of watershed-scale land use change on stream nitrate concentrations   总被引:1,自引:0,他引:1  
The Walnut Creek Watershed Monitoring Project was conducted from 1995 through 2005 to evaluate the response of stream nitrate concentrations to changing land use patterns in paired 5000-ha Iowa watersheds. A large portion of the Walnut Creek watershed is being converted from row crop agriculture to native prairie and savanna by the U.S. Fish and Wildlife Service at the Neal Smith National Wildlife Refuge (NSNWR). Before restoration, land use in both Walnut Creek (treatment) and Squaw Creek (control) watersheds consisted of 70% row crops. Between 1990 and 2005, row crop area decreased 25.4% in Walnut Creek due to prairie restoration but increased 9.2% in Squaw Creek due to Conservation Reserve Program (CRP) grassland conversion back to row crop. Nitrate concentrations ranged between <0.5 to 14 mg L(-1) at the Walnut Creek outlet and 2.1 to 15 mg L(-1) at the downstream Squaw Creek outlet. Nitrate concentrations decreased 1.2 mg L(-1) over 10 yr in the Walnut Creek watershed but increased 1.9 mg L(-1) over 10 yr in Squaw Creek. Changes in nitrate were easier to detect and more pronounced in monitored subbasins, decreasing 1.2 to 3.4 mg L(-1) in three Walnut Creek subbasins, but increasing up to 8.0 and 11.6 mg L(-1) in 10 yr in two Squaw Creek subbasins. Converting row crop lands to grass reduced stream nitrate levels over time in Walnut Creek, but stream nitrate rapidly increased in Squaw Creek when CRP grasslands were converted back to row crop. Study results highlight the close association of stream nitrate to land use change and emphasize that grasslands or other perennial vegetation placed in agricultural settings should be part of a long-term solution to water quality problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号