首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Numerous studies have reported a spectrum of sorption phenomena in soils, sediments, and organic matter isolates of those materials that are inconsistent with a partition model proposed in the late 1970s and early 1980s, a model predicated on a hypothesis that sorption is linear and noncompetitive. To explain these nonideal phenomena, prior studies have proposed a hard-soft (glassy-rubbery) model for SOM (soil and sediment organic matter), while others have attributed them singularly to BC (black carbon: soot and charcoal) particles present in topsoils and sediments. In this study, we demonstrated nonideal sorption behavior (isotherm nonlinearity, competitive effects) for a group of apolar compounds in a large set of natural and model organic materials, including a commercial lignin and humic acids from different sources. Complete oxidation of samples by an acidic dichromate method was taken to signify the absence of BC. (However, polymethylene units are stable even if functionalized on both ends, making the technique unreliable for quantifying BC.) Other samples were inferred free of BC by their source and method of preparation. Characterization by thermalanalytical methods indicated the glassy character of the organic materials. The origin of the nonideal behaviors appears to be the glassy character of these materials. Sorption nonlinearity increased or decreased by changing temperature, cosolvent content, or degree of cross-linking by metal ions as predicted for organic solids in a glassy state. We conclude that macromolecular humic substances in the environment may exhibit nonideal sorption behavior in soils and sediments, quite apart from any such behaviors attributable to BC.  相似文献   

2.
The soil lipid fraction can play an important role in the sorption of organic compounds. In this study, the impact of the lipid fraction of freshwater- and wastewater-irrigated soils on the sorption of non- and relatively polar compounds was assessed. Lipid analyses revealed a clear difference between the two lipid fractions. The lipid extract from the wastewater-irrigated soil was consistent with mainly straight paraffinic chain materials; the lipid extract from freshwater-irrigated soil, on the other hand, exhibited stronger signals of aromatics, double bonds, ester, ether, and methyl, in addition to a smaller contribution from methylene protons. Our data suggest that lipid removal induced a stronger increase in the soil's sorption affinity for solutes capable of polar interactions such as atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) and chlorotoluron (N'-(3-chloro-4-methylphenyl)-N,N-dimethylurea) as compared to phenanthrene. Moreover, the level of increase in sorption affinities due to lipid removal was much higher for the freshwater-irrigated soil than for its wastewater-irrigated counterpart, even though the level of lipids in the freshwater-irrigated soil was half that in the wastewater-irrigated one (6 vs. 11% of the total organic C). The higher level of polar functionalities, such as ether and ester moieties, in the lipid fraction from the freshwater-irrigated soil suggests that these extractable compounds compete successfully with the polar solutes (atrazine and chlorotoluron) for specific binding sites in the soil organic matter (SOM). It appears that the composition of the lipid fraction may be a key consideration in unraveling the sorption of organic molecules in soils.  相似文献   

3.
Sixteen USEPA priority polycyclic aromatic hydrocarbons (PAHs) extracted by Soxhlet extraction (S-PAHs) with dichloromethane and routine accelerated solvent extraction (A-PAHs) with 1:1 toluene/methanol, respectively, were investigated in 24 soil samples from two cities in the center of the Pearl River Delta, South China. Polycyclic aromatic hydrocarbons, methylphenanthrene and perylene, in two soils, two sediments, and an immature oil shale were also sequentially extracted by accelerated solvent extraction (ASE) with each of four different organic solvents for three times. The A-PAHs' concentrations are 2.41 times the S-PAHs' concentrations. For sequential three ASEs, PAHs in the first extract account for 56 to 67% of their total concentrations in the sequential three extractions and toluene displays the best extraction performance among the four solvents. Diagnostic ratios of PAHs in Soxhlet extraction, routine ASE, and sequential ASE with each solvent for a given sample are very similar, suggesting their identical petrogenic and pyrogenic sources in the soils and sediments. But the PAH ratios for the shale have an obvious petrogenic origin. The perylene/5-ring PAH ratios indicate a diagenetic source, especially in the shale and sediments. The correlation analysis shows that A-PAHs/S-PAHs is better associated with the contents of total organic carbon (TOC) than those of black carbon (BC). The above results indicate the significant petrogenic origin of PAHs and the important effect of organic matter on their extraction and distribution in the investigated field soils/sediments.  相似文献   

4.
This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.  相似文献   

5.
Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.  相似文献   

6.
Information on ecotoxicity of organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in terrestrial environment is needed for establishing soil quality criteria and for risk assessment purposes. An ecotoxic effect of a model PAH compound (phenanthrene) toward soils microorganisms (nitrifying bacteria) was evaluated in 50 different soils. The soil samples were collected from agricultural land in four regions of Poland with varying levels of industrialization (Slaskie, Dolnoslaskie, Podlaskie, and Lubelskie voievodeships). Soils were characterized for basic physicochemical properties (texture, organic matter content, pH(KCl), total nitrogen content, total sorption capacity) and the content of contaminants including PAHs (73-800 microg kg(-1)), Pb (6-720 mg kg(-1)), and Zn (9-667 mg kg(-1)). Ecotoxicity of phenanthrene (applied at 10, 100, 500, and 1000 mg kg(-1)) to soils microorganisms was evaluated in laboratory studies in control conditions (incubation of soils for 7 d at 20 +/- 2 degrees C). Nitrification potential was used as the ecotoxicity measurements end point. The EC50 values (146-1670 mg kg(-1)) calculated from the square root-X linear regression model differed significantly in various soils, although it was difficult to establish a causative relationship between soil physicochemical characteristic and phenanthrene toxicity. A significant factor in the assessment of soils vulnerability to the effect of phenanthrene was level of soil contamination, particularly with PAHs. Soils with previous contamination were more susceptible (mean EC50, 325 mg kg(-1)) than soils from uncontaminated, rural areas (mean EC50, 603 mg kg(-1)).  相似文献   

7.
Batch sorption isotherms of 1,3,5-trichlorobenzene, 1,3,5-trinitrobenzene, and tetracycline to organic-free montmorillonites and soils receiving heat treatment (375°C for 24 h) were compared with those to unheated sorbents. Sorption of the nonpolar 1,3,5-trichlorobenzene to soil was lowered after the removal of humus by heating, consistent with the mechanism of hydrophobic partition into organic matter. For 1,3,5-trinitrobenzene, the enhanced sorption to heated soils was attributed to specific interactions with exchangeable cations facilitated by heating-induced irreversible partial dehydration of the clay interlayer. For tetracycline, an additional mechanism for sorption enhancement could be due to increased exposure of strong complexation sites on clay minerals after removal of the humic coating. These hypotheses were supported by the sorption data to heated and unheated Na-, K-, and Cs-saturated montmorillonites. The combustion method is commonly adopted to measure the content of black carbon in soils and sediments. However, findings from the present study indicate that combustion may greatly modify the structural properties of clay minerals, leading to misinterpreted sorption contributions of different soil components to sorption of polar or ionic compounds.  相似文献   

8.
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM.  相似文献   

9.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

10.
Knowledge of pesticide distribution and persistence in nursery recycling pond water and sediment is critical for preventing phytotoxicity of pesticides during water reuse and to assess their impacts to the environment. In this study, sorption and degradation of four commonly used pesticides (diazinon, chlorpyrifos, chlorothalonil, and pendimethalin) in sediments from two nursery recycling ponds was investigated. Results showed that diazinon and chlorothalonil were moderately sorbed [K(OC) (soil organic carbon distribution coefficient) from 732 to 2.45 x 10(3) mL g(-1)] to the sediments, and their sorption was mainly attributable to organic matter content, whereas chlorpyrifos and pendimethalin were strongly sorbed (K(OC) > or = 7.43 x 10(3) mL g(-1)) to the sediments, and their sorption was related to both organic matter content and sediment texture. The persistence of diazinon and chlorpyrifos was moderate under aerobic conditions (half-lives = 8 to 32 d), and increased under anaerobic conditions (half-lives = 12 to 53 d). In contrast, chlorothalonil and pendimethalin were quickly degraded under aerobic conditions with half-lives < 2.8 d, and their degradation was further enhanced under anaerobic conditions (half-lives < 1.9 d). The strong sorption of chlorpyrifos and pendimethalin by the sediments suggests that the practice of recycling nursery runoff would effectively retain these compounds in the recycling pond, minimizing their offsite movement. The prolonged persistence of diazinon and chlorpyrifos, however, implies that incidental spills, such as overflows caused by storm events, may contribute significant loads of such pesticides into downstream surface water bodies.  相似文献   

11.
Sorption dynamics of organic and inorganic phosphorus compounds in soil   总被引:1,自引:0,他引:1  
Phosphorus retention in soils is influenced by the form of P added. The potential impact of one P compound on the sorption of other P compounds in soils has not been widely reported. Sorption isotherms were utilized to quantify P retention by benchmark soils from Indiana, Missouri, and North Carolina when P was added as inorganic P (Pi) or organic P (beta-D-glucose-6-phosphate, G6P; adenosine 5'-triphosphate, ATP; and myoinositol hexaphosphate, IP6) and to determine whether soil P sorption by these organic P compounds and Pi was competitive. Isotherm supernatants were analyzed for pH and total P using standard protocols, while Pi and organic P compounds were assayed using ion chromatography. Under the controlled conditions of this study, the affinity of all soils for P sources followed the order IP6 > G6P > ATP > Pi. Each organic P source had a different potential to desorb Pi from soils, and the order of greatest to least Pi desorption was G6P > ATP > IP6. Glucose-6-phosphate and ATP competed more directly with Pi for sorption sites than IP6 at greater rates of P addition, but at the lesser rates of P addition, IP6 actually desorbed more Pi. Inositol hexaphosphate was strongly sorbed by all three soils and was relatively unaffected by the presence of other P sources. Decreased total P sorption due to desorption of Pi can be caused by relatively small additions of organic P, which may help explain vertical P movement in manured soils. Sorption isotherms performed using Pi alone did not accurately predict total P sorption in soils.  相似文献   

12.
The zinc binding characteristics of natural organic matter (NOM) from several representative surface waters were studied and compared. NOM samples were concentrated by reverse osmosis. The samples were treated in the laboratory to remove trace metals. Square wave anodic stripping voltammetry (SWASV) was used to study zinc complexing properties of those NOM samples at fixed pH, ionic strength, and dissolved organic carbon (DOC) concentrations. Experimental data were compared to the predictions from the Windermere Humic Aqueous Model (WHAM) Version VI. At the same pH, ionic strength, and temperature, the zinc titration curves for NOM samples from different surface water sources tested in our study almost overlapped each other, indicating similarity in zinc binding properties of the NOM. A discrete two-site model gave good fits to our experimental titration data. Non-linear fitting by FITEQL 4.0 shows that the conditional zinc binding constants at the same pH are similar for NOM from different sources, indicating that zinc complexation characteristics of the NOM used in our study do not depend on their origin and one set of binding parameters can be used to represent Zn-NOM complexation for NOM samples from those different surface water sources representing geographically diverse locations. In addition, the total ligand concentrations (L(1,T), L(2,T), and L(T)) of all NOM show no observable gradation with increasing pH (L(1,T)=2.06+/-0.80 mmol/g carbon; L(2,T)=0.12+/-0.04 mmol/g carbon; L(T)=2.18+/-0.78 mmol/g carbon), while the conditional binding constants of zinc by NOM (logK(ZnL)(c)) show a linear increase with increasing pH(logK(1)(c)(pH=6.0)=4.69+/-0.25; logK(1)(c)(pH=7.0)=4.94+/-0.10; logK(1)(c)(pH=8.0)=5.25+/-0.006; logK(2)(c)(pH=6.0)=6.29+/-0.13; logK(2)(c)(pH=7.0)=6.55+/-0.08; logK(2)(c)(pH=8.0)=6.86+/-0.023) with a slope of ca. 0.28, indicating the zinc-NOM complexes become more stable at higher pH. The WHAM VI predicted free zinc ion activities at high zinc concentrations agree with our experimental results at pH 6.0, 7.0, and 8.0. However, the zinc binding of these NOM samples is over estimated by WHAM VI at zinc concentrations below 10(-6) M at pH 8.0.  相似文献   

13.
Sequential supercritical fluid (CO2) extraction (SSFE) was applied to eight historically contaminated soils from diverse sources with the aim to elucidate the sorption-desorption behavior of high molecular weight polycyclic aromatic hydrocarbons (PAHs). The method involved five extraction phases applying successively harsher conditions by increasing fluid temperature and density mobilizing target compounds from different soil particle sites. Two groups of soils were identified based on readily desorbing (available) PAH fractions obtained under mildest extraction conditions (e.g., readily desorbing fractions of fluoranthene and pyrene significantly varied between the soils ranging from <10 to >90%). Moreover, extraction behavior strongly correlated with molecular weight revealing decreasing available PAH fractions with increasing weight. Physicochemical soil parameters such as particle size distribution and organic dry mass were found to have no distinct effect on the sorption-desorption behavior of PAHs in the different soils. However, PAH profiles significantly correlated with readily available pollutant fractions; soils with relatively less mobile PAHs had higher proportions of five- and six-ring PAHs and vice versa. Eventually, biodegradability corresponded well with PAH recoveries under the two mildest extraction phases. However, a quantitative relationship was only established for soils with biodegradable PAHs. Out of eight soils, five showed no biodegradation including the four soils with the lowest fraction of readily desorbing PAHs. Only one soil (which was found to be highly toxic to Vibrio fischeri) did not match the overall pattern showing no PAH biodegradability but large fractions of highly mobile PAHs, concluding that mass transfer limitations may only be one of many factors governing biodegradability of PAHs.  相似文献   

14.
为了解西溪湿地底泥质量现状,2012年9月采集保护区内不同干扰类型的底泥样本,测试了底泥中重金属和POPs中PCBs、OCPs和PAHs的含量,并对湿地底泥污染进行了生态风险初步评价。结果表明,底泥中未检出PCBs和OCPs,但检测出14种EPA优控PAHs,总PAHs的浓度范围为115.9~217.8 ng·g^-1,低于潜在生态风险的效应区间低值ERL,其中列入中国"水中优先控制污染黑名单"的7种PAHs均有检出并且其总量占∑PAHs 1/2左右(平均为50.08%);底泥中8种重金属含量平均值低于《土壤环境质量标准》(GB 15618—1995)的二级标准,但Hg、Zn、Pb、Ni含量在多个位点已超过一级标准;分别采用土壤背景值和国家一级标准为参比值对湿地底泥中重金属进行单因子污染风险指数评价,发现分别有7种和4种元素的污染指数大于1;综合分析不同干扰类型的底泥质量,发现底泥疏浚能有效降低有机质含量、全氮和PAHs含量,但对全磷、重金属含量则无明显效果,封闭水体的干塘措施能显著减少污泥量和有机物含量。研究结果表明,西溪湿地底泥中高环PAHs和重金属污染水平可能对西溪湿地生物具有潜在的生物毒性作用及不利的生态影响效应,其疏浚底泥农用则无生态风险。  相似文献   

15.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

16.
Oxytetracycline sorption to organic matter by metal-bridging   总被引:11,自引:0,他引:11  
The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups.  相似文献   

17.
The role of structural fractions of dissolved organic matter (DOM) from wastewater in the sorption process of hydrophobic organic compounds is still not clear. In this study, DOM from two wastewater treatment plants (Lachish and Netanya, Israel) was fractionated to hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The fractions were characterized and their sorptive capabilities for s-triazine herbicides and polycyclic aromatic hydrocarbons (PAHs) were studied. For all sorbates, the binding to the HoN fractions was much higher than to HoA fractions. The HoA fractions were more polar than the HoN fractions, containing a higher level of carboxylic functionalities. However the higher binding coefficients of atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine) and ametryn [2-(ethylamino)-4-isopropylamino-6-methyl-thio-s-triazine] obtained for the HoN fractions suggest that their sorption is governed by hydrophobic-like interactions rather than H bonding. The values of binding coefficients of PAHs measured for the HoN fractions were within the range reported for humic acids and much higher than other fractions, suggesting that this fraction plays an important role in the overall sorption of these compounds by DOM. Higher sorption coefficients were measured for the Netanya DOM sample containing higher level of hydrophobic fractions (HoA + HoN) than the Lachish DOM, suggesting that the sorption of hydrophobic organic compounds by DOM is governed by the level of these structural substances. The evaluation of mobility of organic pollutants by wastewater irrigation requires not only assessment of the total carbon concentration but also, more importantly, the content of the hydrophobic fractions.  相似文献   

18.
Both natural organic matter (NOM) and surfactants are known to enhance the apparent aqueous solubility of hydrophobic organic contaminants (HOCs) in aqueous systems. In this study, the combined effect of NOM and surfactants on enhancing the solubility of HOCs was investigated, since both may occur and affect the fate and transport of HOCs in natural aqueous environments. Experimental results indicated that the apparent solubility of naphthalene, phenanthrene, and pyrene in NOM and anionic surfactant solution was lower than their solubility in NOM solution alone. However, the apparent solubility of an HOC in NOM and nonionic surfactant solution is almost the same as the sum of the HOC's solubility in NOM solution plus its solubility in nonionic surfactant solution. The observation that apparent aqueous solubility of HOCs in NOM and anionic surfactant solution is decreased is probably due to the fact that the cations that are released when the anionic surfactant dissociates may form ion pairs with acidic or phenolic groups associated with the NOM. This serves to increase the size of hydration of these groups, thereby decreasing the effective size of the nonpolar moieties associated with the NOM, and thus decreasing hydrophobic partitioning of the HOCs into the NOM. The results presented here will help us to understand the effect of NOM and surfactants on the fate and transport of HOCs in aquatic systems.  相似文献   

19.
A thermodynamically based method to quantify true sorption hysteresis   总被引:8,自引:0,他引:8  
Sorption of organic chemicals to soils and sediments often shows true hysteresis (i.e., nonsingularity of the sorption-desorption isotherm not attributable to known experimental artifacts). Since true sorption hysteresis is fundamentally important to contaminant fate, a way to quantify it is desirable. Previously proposed indices of hysteresis are empirical and usually depend on the isotherm model. True sorption hysteresis to synthetic and natural organic solids has been attributed to irreversible alteration of the solid during the sorption-desorption cycle. Given this mechanism, we propose the Thermodynamic Index of Irreversibility (TII) for quantifying hysteresis in soils where natural organic matter dominates the sorption process. The TII is based on the difference in free energy between the real desorption state and the hypothetical fully reversible state. The index is 0 for completely reversible systems and approaches 1 as the process tends toward complete irreversibility. It does not require any assumptions about the physical properties or molecular composition of the solid, and it does not depend on a specific equilibrium model. A sensitivity analysis of measurement errors provides general recommendations for the setup of sorption-desorption experiments. The TII was applied to sorption of 1,4-dichlorobenzene (DCB) to two high-organic soils, Pahokee peat (PP) and Amherst soil (AS), and a low-rank coal reference material, Beulah-Zap lignite (BZL). Common artificial causes of hysteresis were eliminated. Hysteresis was significant in the peat and the coal. The TII was clearly concentration dependent for both solids; it decreased with concentration for the peat, but increased with concentration for the coal. The TII allows quantification of hysteresis as a function of sorbate-sorbent combination, concentration, time, and other variables.  相似文献   

20.
Sorption of butachlor to various types of common soil components was investigated. Six pure minerals (montmorillonite [Mont], kaolinite [Kaol], Ca homoionic montmorillonite [Ca-Mont] and kaolinite [Ca-Kaol], amorphous hydrated Al and Fe oxides [AHOs-Al, AHOs-Fe]), four soil alkali-extractable pure humic acids (HAs), and the four corresponding HAs originated real unmodified and HO-treated soils were selected as the representative sorbents. Results showed that the HAs played a crucial role, and clay minerals (especially Mont) also showed an important effect in butachlor sorption. The AHOs may likely influence only in a mediator way by enhancing the availability of sorption domains of HAs. By removing 78% (on average) of the total organic carbon (TOC) from the soils with HO, the content ratio of clay to TOC (RCO) increased by an average of 367% and became >60. This change simultaneously decreased the sorption capacity of soils (40%, on average). Considering that the surface sorption domain on clay minerals may be highly exposed and more competitive after the partial removal of soil organic matter (SOM), this reaffirmed the potential contribution from clay minerals. It can thus be inferred that in the real soil where SOM and clay minerals are associated, the coating of clay minerals may have weakened the partition function of SOM or blocked some sorption domain within SOM, resulting in a decreased sorption of butachlor. Therefore, clay minerals, especially 2:1 type expanding minerals, may play a dual function vs. SOM content for the sorption of butachlor in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号