首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
He, Laien and Gregory V. Wilkerson, 2011. Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge. Journal of the American Water Resources Association (JAWRA) 47(6):1298–1316. DOI: 10.1111/j.1752‐1688.2011.00567.x Abstract:  Bankfull discharge (Qbf) and bankfull channel geometry (i.e., width, Wbf; mean depth, Dbf; and cross‐section area, Abf) are important design parameters in stream restoration, habitat creation, mined land reclamation, and related projects. The selection of values for these parameters is facilitated by regional curves (regression models in which Qbf, Wbf, Dbf, and Abf are predicted as a function of drainage area, Ada). This paper explores the potential for the two‐year return‐period discharge (Q2) to improve predictions of Wbf, Dbf, and Abf. Improved predictions are expected because Q2 estimates integrate the effects of basin drainage area, climate, and geology. For conducting this study, 29 datasets (each representing one hydrologic region) spanning 14 states in the United States were analyzed. We assessed the utility of using Q2 by comparing statistical measures of regression model performance (e.g., coefficient of determination and Akaike’s information criterion). Compared to using Ada, Q2 is shown to be a “clearly superior” predictor of Wbf, Dbf, and Abf, respectively, for 21, 13, and 25% of the datasets. By contrast, Ada yielded a clearly superior model for predicting Wbf, Dbf, and Abf, respectively, for 0, 0, and 14% of the datasets. Our conclusion is that it alongside with developing conventional regional curves using Ada it is prudent to develop regional curves that use Q2 as an independent variable because in some cases the resulting model will be superior.  相似文献   

2.
Manning's equation is used widely to predict stream discharge (Q) from hydraulic variables when logistics constrain empirical measurements of in‐bank flow events. Uncertainty in Manning's roughness (nM) is the major source of error in natural channels, and sand‐bed streams pose difficulties because flow resistance is affected by flow‐dependent bed configuration. Our study was designed to develop and validate models for estimating Q from channel geometry easily derived from cross‐sectional surveys and available GIS data. A database was compiled consisting of 484 Q measurements from 75 sand‐bed streams in Alabama, Georgia, South Carolina, North Carolina (Southeastern Plains), and Florida (Southern Coastal Plain), with six New Zealand streams included to develop statistical models to predict Q from hydraulic variables. Model error characteristics were estimated with leave‐one‐site‐out jackknifing. Independent data of 317 Q measurements from 55 Southeastern Plains streams indicated the model (Q = AcRH0.6906S0.1216; where Ac is the channel area, RH is the hydraulic radius, and S is the bed slope) best predicted Q, based on Akaike's information criterion and root mean square error. Models also were developed from smaller Q range subsets to explore if subsets increased predictive ability, but error fit statistics suggested that these were not reasonable alternatives to the above equation. Thus, we recommend the above equation for predicting in‐bank Q of unbraided, sandy streams of the Southeastern Plains.  相似文献   

3.
ABSTRACT: The model bankfull discharge recurrence interval (annual series) (Ta) in streams has been approximated at a 1.5‐year flow event. This study tests the linkage between regional factors (climate, physiography, and ecoregion) and the frequency of bank‐full discharge events in the Pacific Northwest (PNW). Patterns of Ta were found to be significant when stratified by EPA Ecoregion. The mean value for Ta in the PNW is 1.4 years; however, when the data is stratified by ecoregion, the humid areas of western Oregon and Washington have a mean value of 1.2 years, while the dryer areas of Idaho and eastern Oregon and Washington have a mean value of 1.4 to 1.5 years. Among the four factors evaluated, vegetation association and average annual precipitation are the primary factors related to channel form and Ta. Based on the results of the Ta analyses, regional hydraulic geometry relationships of streams were developed for the PNW, which relate variables, such as bank‐full cross‐sectional area, width, depth, and velocity, to bankfull discharge and drainage area. The verification of Ta values, combined with the development of regional hydraulic geometry relationships, provides geographically relevant information that will result in more accurate estimates of hydraulic geometry variables in the PNW.  相似文献   

4.
Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x Abstract: This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (p < 0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications.  相似文献   

5.
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating.  相似文献   

6.
Channel roughness, often described by Manning's n, is used to represent the amount of resistance that flow encounters, and has direct implications on velocity and discharge. Ideally, n is calculated from a long‐term record of channel discharge and hydraulic geometry. In the absence of these data, a combination of photo references and a validated qualitative method is preferable to simply choosing n arbitrarily or from a table. The purpose of this study was to use United States Geological Survey (USGS) streamflow data to calculate roughness coefficients for streams in the mountains of North Carolina. Five USGS gage stations were selected for this study, representing drainage areas between 71.5 and 337 km2. Photo references of the study sites are presented. Measured discharges were combined with hydraulic geometry at a cross‐section to calculate roughness coefficients for flows of interest. At bankfull flow, n ranged between 0.039 and 0.064 for the five study sites. Roughness coefficients were not constant for all flows in a channel, and fluctuated over a large range. At all sites, roughness was highest during low‐flow conditions, then quickly decreased as flow increased, up to the bankfull elevation.  相似文献   

7.
Abstract: A discharge rating is a relationship between stage and discharge at a specific point in a river stream or lake outlet structure. Rating curves are useful for interpolating and perhaps extrapolating flow measurements and for use directly in storage routing models. However, rating data and stations are limited. A generalized nondimensional mathematical expression that describes the rating relation of depth and discharge has been developed and tested against observations from 46 stations in West‐Central Florida. Three approaches were tested in sequence to select the best fit. The proposed model is a log‐linear equation with zero intercept and a slope that fits more than 50% of the stations were analyzed. The model is normalized by the depth and discharge values at 10% exceedance from data published by the U.S. Geological Survey. For ungauged applications, Q10 and d10 were derived from a relationship shown to be reasonably well correlated to the watershed drainage area. The average relative error for this parameter set shows that for the flow range up to the Q10 discharge, better than 30% agreement with the USGS rating data can be expected for about 50% of the stations. Further analysis is required to determine why so many stations exhibit such similar behavior and to identify the criteria or parameters governing the differences.  相似文献   

8.
Haucke, Jessica and Katherine A. Clancy, 2011. Stationarity of Streamflow Records and Their Influence on Bankfull Regional Curves. Journal of the American Water Resources Association (JAWRA) 47(6):1338–1347. DOI: 10.1111/j.1752‐1688.2011.00590.x Abstract: Bankfull regional curves, which are curves that establish relationships among channel morphology, discharge, drainage area, are used extensively for stream restoration. These curves are developed upon the assumption that streamflows maintain stationarity over the entire record. We examined this assumption in the Driftless Area of southwestern Wisconsin where agricultural soil retention practices have changed, and precipitation has increased since the 1970s. We developed a bankfull regional curve for this area using field surveys of bankfull channel performed during 2008‐2009 and annual series of peak streamflows for 10 rivers with streamflow records ranging from the 1930s to 2009. We found bankfull flows to correlate to a 1.1 return period. To evaluate gage data statistics, we used the sign test to compare our channel morphology to historic 1.5 return period discharge (Q1.5) for five time periods: 1959‐1972, 1973‐1992, 1993‐2008, 1999‐2008, and the 1959‐2008 period of record. Analysis of the historic gage data indicated that there has been a more than 30% decline in Q1.5 since 1959. Our research suggests that land conservation practices may have a larger impact on gaging station stationarity than annual precipitation changes do. Additionally, historic peak flow data from gages, which have records that span land conservation changes, may need to be truncated to represent current flow regimes.  相似文献   

9.
Abstract: Tree basal growth in response to flooding regime was evaluated at a 5.2‐ha bottomland forest along the Olentangy River in central Ohio. Tree‐ring analysis was used to develop a 14‐year basal area increment (BAI) (cm2/year) series for 42 canopy trees (representing 10 species) throughout the bottomland. Mean annual BAI was evaluated relative to the frequency and duration of bankfull (>70 m3/s) and high‐flood (>154 m3/s) river discharge for a given water year (October 1‐September 30) and growing season (April 1‐September 30). A significant polynomial relationship was detected between the number of days of high‐flood river discharge over a combined two‐year period (Year i + Year i ? 1) and mean annual BAI. No significant relationships were detected when only the concurrent‐year or previous‐year flood regimes were considered or when growing season was considered. A similar relationship was detected when duration of high‐flood discharge days and BAI were both evaluated in two‐year increments (Year i + Year i ? 1). Mean annual BAI was most influenced by boxelder (Acer negundo) which was the dominant species and exhibited strong agreement with the overall BAI series. In each case, the resulting parabolic curve of tree basal growth in response to flooding suggests an optimal number of flooding days, a response to perturbation consistent with the subsidy‐stress model. Dendrochronology may be a useful tool for managers looking to restore environmental flows to regulated rivers.  相似文献   

10.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   

11.
ABSTRACT: Bankfull depth and discharge are basic input parameters to stream planform, stream restoration, and highway crossing designs, as well as to the development of hydraulic geometry relationships and the classification of streams. Unfortunately, there are a wide variety of definitions for bankfull that provide a range of values, and the actual selection of bankfull is subjective. In this paper, the relative uncertainty in determining the bankfull depth and discharge is quantified, first by examining the variability in the estimates of bankfull and second by using fuzzy numbers to describe bankfull depth. Fuzzy numbers are used to incorporate uncertainty due to vagueness in the definition of bankfull and subjectivity in the selection of bankfull. Examples are provided that demonstrate the use of a fuzzy bankfull depth in sediment trans. port and in stream classification. Using fuzzy numbers to describe bankfull depth rather than a deterministic value allows the engineer to base designs and decisions on a range of possible values and associated degrees of belief that the bankfull depths take on each value in that range.  相似文献   

12.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

13.
Bankfull hydraulic geometry relationships are used to estimate channel dimensions for streamflow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire United States (U.S.) (e.g., in Soil and Water Assessment Tool), even though studies have shown that the use of regional curves can improve the reliability of predictions considerably. In this study, regional regression equations predicting bankfull width, depth, and cross‐sectional area as a function of drainage area are developed for the Physiographic Divisions and Provinces of the U.S. and compared to a nationwide equation. Results show that the regional curves at division level are more reliable than the nationwide curve. Reliability of the curves depends largely on the number of observations per region and how well the sample represents the population. Regional regression equations at province level yield even better results than the division‐level models, but because of small sample sizes, the development of meaningful regression models is not possible in some provinces. Results also show that drainage area is a less reliable predictor of bankfull channel dimensions than bankfull discharge. It is likely that the regional curves can be improved using multiple regression models to incorporate additional explanatory variables.  相似文献   

14.
Abstract: Snowmelt largely affects runoff in watersheds in Nordic countries. Neural networks (NN) are particularly attractive for streamflow forecasting whereas they rely at least on daily streamflow and precipitation observations. The selection of pertinent model inputs is a major concern in NNs implementation. This study investigates performance of auxiliary NN inputs that allow short‐term streamflow forecasting without resorting to a deterministic snowmelt routine. A case study is presented for the Rivière des Anglais watershed (700 km2) located in Southern Québec, Canada. Streamflow (Q), precipitations (rain R and snow S, or total P), temperature (T) and snow lying (A) observations, combined with climatic and snowmelt proxy data, including snowmelt flow (QSM) obtained from a deterministic model, were tested. NN implemented with antecedent Q and R produced the largest gains in performance. Introducing increments of A and T to the NNs further improved the performance. Long‐term averages, seasonal data, and QSM failed to improve the networks.  相似文献   

15.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   

16.
Regional curves are empirical relationships that can help identify the bankfull stage in ungaged watersheds and aid in designing the riffle dimension in stream restoration projects. Bankfull regional curves were developed from gage stations with drainage areas less than 102 mi2 (264.2 km2) for the Alleghany Plateau/Valley and Ridge (AP/VR), Piedmont, and Coastal Plain regions of Maryland. The AP/VR regions were combined into one region for this project. These curves relate bankfull discharge, cross‐sectional area, width, and mean depth to drainage area within the same hydro‐physiographic region (region with similar rainfall/runoff relationship). The bankfull discharge curve for the Coastal Plain region was further subdivided into the Western Coastal Plain (WCP) and Eastern Coastal Plain (ECP) region due to differences in topography and runoff. Results show that the Maryland Piedmont yields the highest bankfull discharge rate per unit drainage area, followed by the AP/VR, WCP, and ECP. Likewise, the Coastal Plain and AP/VR streams have less bankfull cross‐sectional area per unit drainage area than the Piedmont. The average bankfull discharge return interval across the three hydro‐physiographic regions was 1.4 years. The Maryland regional curves were compared to other curves in the eastern United States. The average bankfull discharge return interval for the other studies ranged from 1.1 to 1.8 years.  相似文献   

17.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

18.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

19.
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth.  相似文献   

20.
Abstract: In this article, we describe a method for predicting floodplain locations and potential lateral channel migration across 82,900 km (491 km2 by bankfull area) of streams in the Columbia River basin. Predictions are based on channel confinement, channel slope, bankfull width, and bankfull depth derived from digital elevation and precipitation data. Half of the 367 km2 (47,900 km by length) of low‐gradient channels (≤ 4% channel slope) were classified as floodplain channels with a high likelihood of lateral channel migration (182 km2, 50%). Classification agreement between modeled and field‐measured floodplain confinement was 85% (κ = 0.46, p < 0.001) with the largest source of error being the misclassification of unconfined channels as confined (55% omission error). Classification agreement between predicted channel migration and lateral migration determined from aerial photographs was 76% (κ = 0.53, p < 0.001) with the largest source of error being the misclassification of laterally migrating channels as non‐migrating (35% omission error). On average, more salmon populations were associated with laterally migrating channels and floodplains than with confined or nonmigrating channels. These data are useful for many river basin planning applications, including identification of land use impacts to floodplain habitats and locations with restoration potential for listed salmonids or other species of concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号