首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
To assist risk assessors at the Department of Energy’s Savannah River Site (SRS), a Geographic Information System (GIS) application was developed to provide relevant information about specific receptor species of resident wildlife that can be used for ecological risk assessment. Information was obtained from an extensive literature review of publications and reports on vertebrate- and contaminant-related research since 1954 and linked to a GIS. Although this GIS is a useful tool for risk assessors because the data quality is high, it does not describe the species’ site-wide spatial distribution or life history, which may be crucial when developing a risk assessment. Specific receptor species on the SRS were modeled to provide an estimate of an overall distribution (probability of being in an area). Each model is a stand-alone tool consisting of algorithms independent of the GIS data layers to which it is applied and therefore is dynamic and will respond to changes such as habitat disturbances and natural succession. This paper describes this modeling process and demonstrates how these resource selection models can then be used to produce spatially explicit exposure estimates. This approach is a template for other large federal facilities to establish a framework for site-specific risk assessments that use wildlife species as endpoints.Current address: Biology Department, University of South Dakota, Vermillion, SD 57069  相似文献   

2.
Management of river basins involves the making of informed choices about the desired levels of economic activities and ecosystem functioning in the catchment. Information on the economic and ecological effects of measures as well as their spatial distribution is therefore needed. This paper proposes the following instruments to support decision-making in river basins: (1) the linking of models and indicators to describe the economic and ecological effects of management actions and their spatial distribution and (2) an extended evaluation framework that aims to evaluate management actions on three objectives for sustainable river management. These are cost-effectiveness, spatial equity, and environmental quality. This paper illustrates the potential of these instruments for river basin management by a case-study on nutrient management in the Rhine basin. In this case-study four nutrient abatement strategies are formulated, based on policies of the International Commission for the Protection of the Rhine and the North Sea Commission. These strategies are analysed and evaluated on their contribution to the three management objectives. Results show that none of these strategies score highest on cost-effectiveness, spatial equity and environmental quality simultaneously. It appears that cost-effectiveness is in conflict with environmental quality, whereas spatial equity and cost-effectiveness show quite close correspondence. This means that a trade-off has to be made between costs and spatial equity on the one hand, and environmental standards on the other hand. This paper offers a framework to make these trade-offs more explicit and provides quantitative information on cause-effect relationships, economic and environmental effects and the spatial distribution of these effects for various management strategies. This information can be particularly useful in the development of compromises required to establish international agreement and co-operation.  相似文献   

3.
Scientists often use mathematical models to assess river water quality. However, the application of the models in environmental management and risk assessment is quite limited because of the difficulty of preparing input data and interpreting model output. This paper presents a study that links ArcIMS, a Web-based Geographic Information System (GIS) software to ROUT, a national and regional scale river model which evolved from the US Environmental Protection Agency's Water Use Improvement and Impairment Model, to create a WWW-GIS-based river simulation model called GIS-ROUT. GIS-ROUT is used to predict chemical concentrations in perennially flowing rivers throughout the continental United States that receive discharges from more than 10,000 publicly owned wastewater treatment plants (WWTPs). The WWTP chemical loadings are calculated from per capita per day disposal of product ingredients and the population served by each plant. Each WWTP, containing data on treatment type and influent and effluent flows, is spatially associated with a specific receiving river segment. Based on user defined treatment-type removal rates for a particular chemical, an effluent concentration for each WWTP is calculated and used as input to the river model. Over 360,000 km of rivers are modeled, incorporating dilution and first order loss of the chemical in each river segment. The integration of spatial data, GIS, the WWW, and modeling in GIS-ROUT makes it possible to organize and analyze data spatially, and view results on interactive maps as well as tables and distribution charts. The integration allows scientists and managers in different locations to coordinate and share their estimations for environmental exposure and risk assessments.  相似文献   

4.
ABSTRACT: A method for water resources protection based on spatial variability of vulnerability is proposed. The vulnerability of a water resource is defined as the risk that the resource will become contaminated if a pollutant is placed on the surface at one point as compared to another. A spatial modelling method is defined in this paper to estimate a travel time between any point of a catchment and a resource (river or well). This method is based on spatial analysis tools integrated in Geographical Information Systems (GIS). The method is illustrated by an application to an area of Massif Central (France) where three different types of flow appear: surface flow, shallow subsurface flow, and permanent ground water flow (baseflow). The proposed method gives results similar to classical methods of estimation of travel time. The contribution of GIS is to improve the mapping of vulnerability by taking the spatial variability of physical phenomena into account.  相似文献   

5.
6.
Remote sensing has emerged as one of the major techniques for the analysis and delineation of large floods. This analysis can provide data invaluable for the hydrological management of large river systems. A need for information on the extent of floodplain inundation for the lower reaches of the largest river in the UK was met by a search through Landsat images of floods and the analysis of the best example recorded. Automated classification of the Landsat imagery of this flood on the river Severn in 1977 was used to provide estimates of the extent and spatial distribution of inundation. Flood images were generated using the Plessey IDP 3000 image processor, and the maps derived accorded well with aerial photography and qualitative flood information. Three distinct floodplain environments were delineated and flood images produced by different spectral bands compared. Specific questions prompted by flood hazard management and concerning the processes and extent of flooding were answered by the Landsat data analysis. Management of the flood risk of large rivers is expensive and remote sensing data is a relatively cheap and effective way of monitoring control works and providing data for the prediction of the effects of future hydrological works. Remote sensing is a practical way in which spatial information concerning the behavior of large dynamic systems can be obtained both quickly and relatively cheaply.  相似文献   

7.
Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.  相似文献   

8.
Floodplain delineation may inform protection of wetland systems under local, state, or federal laws. Nationally available Federal Emergency Management Agency Flood Insurance Rate Maps (FIRMs, “100‐year floodplain” maps) focus on urban areas and higher‐order river systems, limiting utility at large scales. Few other national‐scale floodplain data are available. We acquired FIRMs for a large watershed and compared FIRMs to floodplain and integrated wetland area mapping methods based on (1) geospatial distance, (2) geomorphic setting, and (3) soil characteristics. We used observed flooding events (OFEs) with recurrence intervals of 25‐50 to >100 years to assess floodplain estimate accuracy. FIRMs accurately reflected floodplain areas based on OFEs and covered 32% of river length, whereas soil‐based mapping was not as accurate as FIRMs but characterized floodplain areas over approximately 65% of stream length. Geomorphic approaches included more areas than indicated by OFE, whereas geospatial approaches tended to cover less area. Overall, soil‐based methods have the highest utility in determining floodplains and their integrated wetland areas at large scales due to the use of nationally available data and flexibility for regional application. These findings will improve floodplain and integrated wetland system extent assessment for better management at local, state, and national scales.  相似文献   

9.
ABSTRACT: Simulation of ground-water flow and fate of contaminants in the subsurface environment constitutes a major phase of most environmental assessment and site remediation studies. These simulation studies yield information on spatial and temporal distributions of contaminants in the subsurface media. An important use of this information is to conduct exposure assessment studies. Spatial and temporal distributions of both chemical concentrations and exposed populations render this integrated exposure analysis task rather difficult. Geographic Information Systems (GIS), on the other hand, provide a platform in which layered, spatially distributed databases can be manipulated with ease, thereby simplifying exposure analysis tasks significantly. In this paper, we describe procedures that combine the simulation models and demographic databases under a GIS platform to automate the exposure assessment phase of a typical health assessment study. Procedures developed herein significantly simplify the post-processing phase of the analysis, and render the overall task more ‘user friendly.’ A site-specific application is included as a demonstration of the proposed process.  相似文献   

10.
Irrigated agriculture has resulted in substantial changes in water flows to the lower reaches of the River Murray. These changes have led to large-scale occurrences of dieback inEucalyptus largiflorens (black box) woodlands as well as increased inputs of salt to the river. Management options to address problems of this scale call for the use of spatial data sets via geographic information systems (GIS). A GIS exists for one floodplain of the River Murray at Chowilla, and a simple model predicted six health classes ofEucalyptus largiflorens based on groundwater salinity, flooding frequency, and groundwater depth.To determine the usefulness of the model for vegetation management, the quality of both the model and the GIS data sets were tested. Success of the testing procedure was judged by the degree of spatial matching between the model's predictions of health and that assessed from aerial photographs and by field truthing. Analyses at 80 sites showed that tree health was significantly greater where groundwater salinity was less than 40 dS/m or flooding occurred more frequently than 1 in 10 years or depth to groundwater exceeded 4 m. Testing of the GIS data sets found that vegetation was misclassified at 15% of sites. Association was shown between GIS-predicted values and field-truthed values of groundwater salinity but not groundwater depth. The GIS model of health is a useful starting point for future vegetation management and can be further improved by increasing the quality of the data coverages and further refining of the model to optimize parameters and thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号