首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
ABSTRACT: A survey was made to determine the status of formal education in wildland hydrology by colleges and universities in the United States, Canada, and Mexico. As of December 1977 nine institutions offered the B.S. degree, 18 the M.S. degree, and 17 the degree of Ph.D. with a major or minor in watershed management, forest hydrology, or range hydrology. In addition, 8 other schools offer a minor in watershed management. The survey indicated 44 schools in the United States offer a total of 157 courses, five schools in Canada offer 24 courses, and 1 in Mexico offers one course in the related areas. The survey illustrated rapid growth in education programs and it is anticipated that growth will continue.  相似文献   

2.
ABSTRACT: Both catchment experiments and a review of hydrologic processes suggest a varying effect of forest harvest on the magnitude of peak flows according to the cause of those peak flows. In northwestern Montana and Northeastern Idaho, annual maximum flows can result from spring snowmelt, rain, mid-winter rain-on-snow, or rain-on-spring-snowmelt. Meteorologic and physical data were used to determine the cause of annual maximum flows in six basins which had the necessary data and were smaller than 150 mi2. Rain-on-spring-snowmelt was the most frequent cause of annual maximum flows in all six basins, although there was a strong gradient in the magnitude and cause of peak flows from southwest to northeast. Less frequent mid-winter rain-on-snow events caused the largest flows on record in four basins. Mid-winter rain-on-snow should be distinguished from rain-on-spring-snowmelt because of differences in seasonal timing, the relative contributions of rain vs. snowmelt, and the projected effects of forest harvest. The effects of mixed flood populations on the flood-frequency curve varied from basin to basin. Annual maximum daily flows could not be reliably predicted from rainfall and snowmelt data.  相似文献   

3.
The Pacific Northwest encompasses a range of hydrologic regimes that can be broadly characterized as either coastal (where rain and rain on snow are dominant) or interior (where snowmelt is dominant). Forest harvesting generally increases the fraction of precipitation that is available to become streamflow, increases rates of snowmelt, and modifies the runoff pathways by which water flows to the stream channel. Harvesting may potentially decrease the magnitude of hyporheic exchange flow through increases in fine sediment and clogging of bed materials and through changes in channel morphology, although the ecological consequences of these changes are unclear. In small headwater catchments, forest harvesting generally increases annual runoff and peak flows and reduces the severity of low flows, but exceptions have been observed for each effect. Low flows appear to be more sensitive to transpiration from vegetation in the riparian zone than in the rest of the catchment. Although it appears that harvesting increased only the more frequent, geomorphically benign peak flows in several studies, in others the treatment effect increased with return period. Recovery to pre‐harvest conditions appeared to occur within about 10 to 20 years in some coastal catchments but may take many decades in mountainous, snow dominated catchments.  相似文献   

4.
5.
A diversion system has been designed to carry the flow from East Fork of Coal Creek around the area proposed for mining at Thunder Basin Coal Company's (TBCC) Coal Creek mine in Campbell County, Wyoming. This paper describes the field and analysis procedures necessary to prepare the diversion design and impact evaluation, and the innovative concepts developed for the diversion system design to minimize impacts on downstream channel stability. Under the proposed diversion system design, water from the East Basin of Coal Creek will be diverted at two locations. At one location, flow will be impounded by a small dam and decanted by a pump through a pipeline into East Fork at the location of the second diversion. At this location, a training dike will be placed across the stream channel to divert flows into a diversion channel. Gravity flow along the diversion channel will deliver water to a playa area which will be converted into a detention basin by placing a small dam across its southern end. Flows up to the magnitude of the 24-hour 2-year peak flow will be passed directly through the detention basin into Middle Fork with negligible attenuation of flow rates. For less frequent events, water will be stored in the detention basin in order to prevent velocities in Lower Middle Fork from exceeding the maximum permissible velocity above which scouring may occur. Evaporation and seepage losses from the diversion system were estimated to be small and should be more than offset by the addition of water from the playa drainage basin into the Coal Creek drainage. Velocities predicted for the Lower Middle Fork after-the diversion is constructed are expected to be low enough that significant erosion of the channel is not expected to occur.  相似文献   

6.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   

7.
ABSTRACT: One hundred twenty-eight stream-crossing culverts in the central Oregon Coast Range were evaluated for peak flow capacity and were compared with current design guidelines. Their ability to pass the 25-year peak flow, as mandated by Oregon State Forest Practice Rules, and their maximum flow capacity were determined. Over 40 percent of the culverts were unable to pass the 25-year peak flow at a headwater to diameter ratio of 1. About 17 percent could not pass the 25-year peak flow without headwater overtopping the roadfill. Installing the next larger pipe size at an additional original installation cost of about 14 percent would have allowed nearly all these culverts to pass the 25-year peak flow. Culvert capacity varied with ownership and watershed size.  相似文献   

8.
ABSTRACT: Design of bridges spanning tidal estuaries or bays requires an estimate of peak tidal flow. One common approach to estimating these flows (Neill's method) uses a first‐order approximation of uniform water surface rise in the water body. For larger water bodies, the assumptions of this method are decreasingly valid. This study develops a simple modification that accounts for the spatial variability in the response of tidal waterways to storm surge flows. The peak tidal flow predicted by Neill's equation is compared to the peak flow determined by numerical simulation of estuaries with simple geometries, ranging from 1 to 25 km in length, using the U.S. Army Corps of Engineers one‐dimensional unsteady flow model, UNET. Results indicate that, under certain conditions, it may be appropriate to apply a correction factor to the peak discharge and peak velocity predicted by Neill's method. An algorithm, developed by nonlinear regression, is presented for computing correction factors based on estuary length, shape, mean depth, and storm‐tide characteristics. The results should permit the design of more reliable, cost‐effective structures by providing more realistic estimates of the potential for bridge scour in tidal waterways, especially when a full solution of the unsteady flow equations is impractical.  相似文献   

9.
Yang, Yang, Theodore A. Endreny, and David J. Nowak, 2011. iTree‐Hydro: Snow Hydrology Update for the Urban Forest Hydrology Model. Journal of the American Water Resources Association (JAWRA) 47(6):1211–1218. DOI: 10.1111/j.1752‐1688.2011.00564.x Abstract: This article presents snow hydrology updates made to iTree‐Hydro, previously called the Urban Forest Effects—Hydrology model. iTree‐Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process‐based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate hydrology routines presented in this update to iTree‐Hydro include: (1) snow interception to simulate the capture of snow by the vegetation canopy, (2) snow unloading to simulate the release of snow triggered by wind, (3) snowmelt to simulate the solid to liquid phase change using a heat budget, and (4) snow sublimation to simulate the solid to gas phase via evaporation. Cold climate hydrology routines were tested with research‐grade snow accumulation and weather data for the winter of 1996‐1997 at Umpqua National Forest, Oregon. The Nash‐Sutcliffe efficiency for open area snow accumulation was 0.77 and the Nash‐Sutcliffe efficiency for under canopy was 0.91. The USDA Forest Service offers iTree‐Hydro for urban forest hydrology simulation through http://www.iTreetools.org .  相似文献   

10.
ABSTRACT: Few hydrological models are applicable to pine flat-woods which are a mosaic of pine plantations and cypress swamps. Unique features of this system include ephemeral sheet flow, shallow dynamic ground water table, high rainfall and evapotranspiration, and high infiltration rates. A FLATWOODS model has been developed specifically for the cypress wetland-pine upland landscape by integrating a 2-D ground water model, a Variable-Source-Area (VAS)-based surface flow model, an evapotranspiration (ET) model, and an unsaturated water flow model. The FLATWOODS model utilizes a distributed approach by dividing the entire simulation domain into regular cells. It has the capability to continuously simulate the daily values of ground water table depth, ET, and soil moisture content distributions in a watershed. The model has been calibrated and validated with a 15-year runoff and a four-year ground water table data set from two different pine flat woods research watersheds in northern Florida. This model may be used for predicting hydrologic impacts of different forest management practices in the coastal regions.  相似文献   

11.
Low impact development (LID) and other land development methods have been presented as alternatives to conventional storm water management and site design. Low impact development encourages land preservation and use of distributed, infiltration‐based storm water management systems to minimize impacts on hydrology. Such systems can include shallow retention areas, akin to natural depression storage. Other approaches to land development may emphasize land preservation only. Herein, an analysis of four development alternatives is presented. The first was Traditional development with conventional pipe/pond storm water management and half‐acre lots. The second alternative was Cluster development, in which implementation of the local cluster development ordnance was assumed, resulting in quarter‐acre lots with a pipe/pond storm water management system and open space preservation. The “Partial” LID option used the same lot layout as the Traditional option, with a storm water management system emphasizing shallow depression storage. The “Full” LID used the Cluster site plan and the depression storage‐based storm water management system. The alternatives were compared to the hydrologic response of existing site conditions. The analysis used two design storms and a continuous rainfall record. The combination of land preservation and infiltration‐based storm water management yielded the hydrologic response closest to existing conditions, although ponds were required to control peak flows for the design storms.  相似文献   

12.
In order to decrease the uncertainty that results in water resource planning and management studies due to the assumed recurrence of historical hydrological sequences, considerable study of stochastic processes in hydrology has taken place during the past 10 or 15 years. The general objective has been to develop a capability for generating a number of valid sequences, each of which could as resonably occur as could a recurrence of past events. A number of serious problems have been encountered, the consequence of which has been a serious lag in the application of stochastic processes to real planning and management problems. These problems include: a. an inability to generate droughts in some cases that are as extreme as have occurred historically, b. the generation of inconsistent values of stream flow at 2 locations on the same stream, c. the lack of mathematical techniques for the management of incomplete data sets, d. a great increase in the required computation for planning and management studies, and e. theoretical and computational difficulties in expanding the scope of stochastic hydrology from monthly quantities to short-period quantities. This paper discusses these problems and various approaches used in attempting their solution.  相似文献   

13.
ABSTRACT: The Hydrologic Simulation Program‐FORTRAN (HSPF) is a powerful time variable hydrologic model that has rarely been applied in arid environments. Here, the performance of HSPF in southern California was assessed, testing its ability to predict annual volume, daily average flow, and hourly flow. The model was parameterized with eight land use categories and physical watershed characteristics. It was calibrated using rainfall and measured flow over a five‐year period in a predominantly undeveloped watershed and it was validated using a subsequent 4‐year period. The process was repeated in a separate, predominantly urbanized watershed over the same time span. Annual volume predictions correlated well with measured flow in both the undeveloped and developed watersheds. Daily flow predictions correlated well with measured flow following rain events, but predictions were poor during extended dry weather periods in the developed watershed. This modeling difficulty during dry‐weather periods reflects the large influence of, and the poor accounting in the model for, artificially introduced water from human activities, such as landscape overwatering, that can be important sources of water in urbanized arid environments. Hourly flow predictions mistimed peak flows, reflecting spatial and temporal heterogeneity of rainfall within the watershed. Model correlation increased considerably when predictions were averaged over longer time periods, reaching an asymptote after an 11‐hour averaging window.  相似文献   

14.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

15.
ABSTRACT: This paper describes methods for estimating volume-duration-frequency relations of urban streams in Ohio with drainage areas less than 6.5 square miles. The methods were developed to assist engineers in the design of hydraulic structures on urban streams for which temporary storage of water is an important element of the design criteria. Multiple-regression equations were developed for estimating maximum flood volumes of d-hour duration and T-year recurrence interval (dVT). Maximum annual flood-volume data for all combinations of six durations (1, 2, 4, 8, 16, and 32 hours) and six recurrence intervals (2, 5, 10, 25, 50, and 100 years) were analyzed. The significant explanatory variables in the resulting 36 volume-duration-frequency equations are drainage area, average annual precipitation, and basin-development factor. Standard errors of prediction for the 36 dVT equations range from ±28 percent to ±44 percent.  相似文献   

16.
ABSTRACT: Many studies can be found in the literature pertaining to the effects of urbanization on surface runoff in small watersheds and the hydrologic response of undeveloped watersheds. However, an extensive literature review yielded few published studies that illustrate differing hydrologic responses from multiple source areas within a watershed. The concepts discussed here are not new, but the methods used provide a unique, basic procedure for investigating stormwater hydrology in topographically diverse basins. Six storm hydrographs from three small central Pennsylvania watersheds were analyzed for this paper; five are presented. Two important conclusions are deduced from this investigation. First, in all cases we found two distinct peaks in stream discharge, each representing different contributing areas to direct discharge with greatly differing curve numbers and lags representative of urban and rural source regions. Second, the direct discharge represents only a small fraction of the total drainage area with the urban peak becoming increasingly important with respect to the rural peak with the amount of urbanization and as the magnitude of the rain event decreases.  相似文献   

17.
Maurer, Edwin P., Levi D. Brekke, and Tom Pruitt, 2010. Contrasting Lumped and Distributed Hydrology Models for Estimating Climate Change Impacts on California Watersheds. Journal of the American Water Resources Association (JAWRA) 46(5):1024–1035. DOI: 10.1111/j.1752-1688.2010.00473.x Abstract: We compare the projected changes to streamflows for three Sierra Nevada rivers using statistically downscaled output from 22 global climate projections. The downscaled meteorological data are used to drive two hydrology models: the Sacramento Soil Moisture Accounting model and the variable infiltration capacity model. These two models differ in their spatial resolution, computational time step, and degree and objective of calibration, thus producing significantly different simulations of current and future streamflow. However, the projected percentage changes in monthly streamflows through mid-21st Century generally did not differ, with the exceptions of streamflow during low flow months, and extreme low flows. These findings suggest that for physically based hydrology models applied to snow-dominated basins in Mediterranean climate regimes like the Sierra Nevada, California, model formulation, resolution, and calibration are secondary factors for estimating projected changes in extreme flows (seasonal or daily). For low flows, hydrology model selection and calibration can be significant factors in assessing impacts of projected climate change.  相似文献   

18.
ABSTRACT: This report presents the results of a survey of hydrology faculties of colleges and universities in the United States and Canada. Information is presented on topics covered in classes, allocation of class periods to individual topics, textbooks, prerequisites, computer use, and accreditation categories for hydrology courses offered by engineering departments. Hydrology courses generally require courses in fluid mechanics, mathematics, statistics, and computer science as prerequisites. Topics that receive the largest allocation of time in both introductory and advanced courses include rainfall-runoff relations, the hydrologic cycle, routing and open channel flow, and statistics. Advanced courses place greater emphasis on watershed models than do the introductory courses. Hydrology courses at both levels allocate the smallest amounts of time to snow hydrology ground-water hydrology, and “other topics.” Very few courses include field or experimental work. In a discipline where computer modeling is a major tool, this lack of field and data-collection experience may lead students to underestimate the uncertainties associated with data used to calibrate models and the modeling results themselves. Survey responses on hydrology courses taught in departments other than civil engineering were too few to permit detailed analysis. Most of these courses spend approximately two-thirds of available class time on the same topics as presented in engineering hydrology courses. The balance of class time is spent on topics that emphasize the specialized interest of the particular discipline, such as soil physics and soil moisture in agricultural engineering.  相似文献   

19.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

20.
ABSTRACT: Many rural areas of the United States still have no public domestic water systems. Typical land use patterns in these areas may require 1/2 mile or more of pipe per farm connection. Public systems serving these areas are economically feasible only if realistic short-term peak demand standards are available for their design. The lack of reliable data upon which to establish such criteria has resulted in a large variation in criteria among state and federal agencies involved in financing and in approving construction of these systems. During the summer of 1975 three distribution laterals of a rural system in Utah were master metered and instantaneous peak flows were recorded for 4 months. The metered lines served 4, 12, and 22 farm houses each. The frequency distribution of peak flows has been analyzed and compared with that developed during similar research in Mississippi and with the existing design standards of the Farmers Home Administration and the State of Utah.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号