首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Suspended sediment from forested and agricultural watersheds was sampled over a five-year period on the island of Oahu. A variety of storm conditions were sampled, giving a measure of the extreme variability in suspended sediment production. Total annual suspended sediment from all watersheds sampled ranged from 8400 kg/km2 to 617,000 kg/km2. Normally, about 90 percent of the total suspended sediment was produced during less than 2 percent of the time. Suspended sediment concentrations rapidly increased during rising stream flow resulting from rain storms. Time to peak of less than two hours is common, with a similarly rapid return to prestorm conditions. The data presented indicate the great variability of suspended sediment yields, making establishment of effective standards difficult.  相似文献   

2.
ABSTRACT: A Helley-Smith pressure differential bedload sampler was used to measure bedload transport at consecutive riffle sections of a riffle-pool-riffle sequence on Bambi Creek, a small (154 ha), second-order stream on Chichagof Island, Alaska, during four storms over a 2-year period. Maximum bedload transport rate measured was 4920 kg/h at a streamflow of 2.35 m3/s corresponding to a storm having a 5-year return interval. Transport of larger sediment (> 8 mm) varied systematically with streamflow at the two sampling locations. At flows up to approximately bankfull, transport of large sediment was greatest at the upstream site; at flows above bankfull, transport of large sediment was greatest at the downstream site. The net import of large sediment to the pool during moderate stormflows and net export of large sediment from the pool during flows above bankfull may be related to a “convergence” or “reversal” of competence between the upstream riffle and subsequent pool at flows approximating bankfull stage. Cross-sections monitored within the study reach indicate that stormflows resulted in net filling of the riffle sections and net scour of the pool; periods of low streamflow resulted in net scour of the riffles and net filling of the pooL  相似文献   

3.
ABSTRACT: Suspended sediment samples were collected in west-side tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochiorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochiorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chiordane. Dissolved samples were analyzed for three organochiorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamfiow were greater during the winter storm runoff - median concentration of 3,590 mg/L versus 489 mg(L and median streamfiow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochiorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.  相似文献   

4.
ABSTRACT: Armored stream segments may affect the suspended sediment regime of small mountain streams in western Oregon by the release of fine sediments stored in the bed gravels. Sieve analysis of bed materials indicated that at least 30 percent of the suspended sediment yield for the 1975–76 winter had been stored in the streambed. Suspended sediment concentrations during storm-generated runoff were influenced by stream discharge and hydrograph characteristics. Sediment-discharge relations for individual storms were characterized by hysteresis loops. A seasonal flushing of fines was shown by a progressive decrease in the ratio of suspended sediment to stream discharge during the winter runoff period.  相似文献   

5.
The transport of bedload and suspended sediments and particulate organic matter was evaluated in Huntington Creek, Utah, during a controlled release of water from Electric Lake Reservoir from August 7–10, 1979. Effects of the release on channel geometry and riffle composition also were assessed. Bedload transport rates increased from zero to 1,650 and 1,500 kg/hr at two cross sections as discharge was increased from 0.4 to 4.9 m3/s; transport rates then decreased erratically as discharge was held constant. Cross section measurements and sediment size analysis indicate that flows were insufficient to transport riffle sediments. Rapid increases in the transport rates of suspended sediments and particulate organic matter also occurred during rising discharge and again decayed when discharge became constant. Suspended sediment concentrations for samples obtained with an automatic pumping sampler were generally less than those found for samples obtained with a DH-48 sampler. Biological measurements still are needed to determine if such a release can improve fisheries habitat by removing fine sediments.  相似文献   

6.
Williamson, Tanja N. and Charles G. Crawford, 2011. Estimation of Suspended‐Sediment Concentration From Total Suspended Solids and Turbidity Data for Kentucky, 1978‐1995. Journal of the American Water Resources Association (JAWRA) 47(4):739‐749. DOI: 10.1111/j.1752‐1688.2011.00538.x Abstract: Suspended sediment is a constituent of water quality that is monitored because of concerns about accelerated erosion, nonpoint contamination of water resources, and degradation of aquatic environments. In order to quantify the relationship among different sediment parameters for Kentucky streams, long‐term records were obtained from the National Water Information System of the U.S. Geological Survey. Suspended‐sediment concentration (SSC), the parameter traditionally measured and reported by the U.S. Geological Survey, was statistically compared to turbidity and total suspended solids (TSS), two parameters that are considered surrogate data. A linear regression of log‐transformed observations was used to estimate SSC from TSS; 72% of TSS observations were less than coincident SSC observations; however, the estimated SSC values were almost as likely to be overestimated as underestimated. The SSC‐turbidity relationship also used log‐transformed observations, but required a nonlinear, breakpoint regression that separated turbidity observations ≤6 nephelometric turbidity units. The slope for these low turbidity values was not significantly different than zero, indicating that low turbidity observations provide no real information about SSC; in the case of the Kentucky sediment record, this accounts for 30% of the turbidity observations.  相似文献   

7.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

8.
The purpose of this project was to assess the effect of estimating total suspended solids (TSS) concentrations from turbidity on TSS loads for streams in the Robeson Creek watershed. Discharge was monitored continuously and base‐flow grab and storm event composite samples were collected and analyzed for TSS and turbidity from five sites during five years of monitoring. For base‐flow samples, the TSS‐turbidity relationship for all five sites was poor indicating that TSS concentrations in base flow cannot be estimated from a TSS‐turbidity relationship. To test the effect of analyzing fewer samples, TSS from every third and the first 20 samples collected from each site was used to develop TSS‐turbidity relationships. In addition, the TSS‐turbidity relationship developed from the most downstream site was used to estimate TSS concentrations from turbidity measured at the other four sites. For four of the five sites, analyzing every third sample for TSS and using the TSS‐turbidity relationship to estimate the missing TSS concentrations would result in mean TSS loads that were not significantly different from the observed. Using the TSS‐turbidity relationship from the outlet to estimate TSS from turbidity measured at the other four sites resulted in significantly different mean TSS loads at three of the four sites. These results indicate that estimating TSS concentrations from turbidity using a TSS‐turbidity relationship developed from a subset of the overall dataset should be done with great caution.  相似文献   

9.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

10.
ABSTRACT: Precipitation, streamflow, and population data were analyzed over the 1941–1990 period to determine whether changes in stormflows and net (post. minus pre-rainstorm) stormflows, associated with warm-season large rainstorms, were similar for two urbanized northeastern Illinois basins. Warm season large rainstorms were defined as April through October rainfall events in which ? 5.1 cm occurred in a 48-hour period over the basin. To minimize differences associated with varying large rainstorm amounts over time, the net sthrmflow for each event was divided by the large rainstorm amount. This ratio, Ui, indicated that the two urbanized basins experienced significant, yet different, increases (102 percent and 49 percent) in flow amount per centimeter of rainfall from 1941–1965 to 1966–1990. Results of a regression analysis between Ui and population showed that the increase in Ui per 100,000 increase in population ranged from 0.59 to 0.67 m3s-1 per cm of rainfall for the two basins. These results demonstrate the varying degree of change that urban planners can expect in stormflows associated with large warm season rainstorms for areas undergoing urbanization.  相似文献   

11.
ABSTRACT: A study was initiated to examine the effects of wind speed, wind direction, freshwater inflow, and tide height on suspended solid concentration and distribution in the Loxahatchee estuary, Florida. Recent efforts to increase freshwater flows in this system raised concerns that suspended solid concentrations would increase as well, which might result in negative impacts for the estuary. The data indicated that total suspended solids (TSS) in the estuary are derived primarily from the inlet and not from freshwater tributaries. In addition, total suspended solids and volatile suspended solids were correlated strongly with salinity, suggesting that suspended sediments act conservatively throughout this system. No one environmental factor had an overwhelming influence on suspended solid concentration throughout the estuary; different regions of the estuary were influenced by different factors. Freshwater inflow was negatively related to TSS in the upper reaches of the estuary but was positively related to TSS in the central embayment region of the estuary. We attribute this latter finding to the fact that extremely high inflows both prevented the normal transport upstream of tidal borne suspended sediments and promoted mixing when the freshwater front moving downstream confronted the tidal front moving upstream. Wind speed, wind direction, and tide height had relatively small effects on TSS concentration but were most influential in reaches upstream of the central embayment, where tidal velocity begins to diminish.  相似文献   

12.
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage.  相似文献   

13.
Sedimentation basins (SBs) are commonly used during highway construction for erosion and sedimentation pollution control as well as for attenuation of overland storm waters. In order to evaluate the sediment removal capacity of these SBs, four basins were selected for monitoring from a new highway construction that extends I-99 to I-80, in Pennsylvania. Between September 2004 and August 2005, ten sampling trips were conducted during which basin inlet and outlet water samples were obtained. The SB samples were analyzed for pH, color, turbidity, total suspended solids (TSS), volatile suspended solids (VSS), total and dissolved iron, magnesium, manganese, aluminum, calcium, sulfate and phosphate. The data showed peaks in concentrations of TSS, total aluminum, total manganese, total iron and total phosphate that closely correlated to localized rainfall peaks. For certain samples, the concentration of TSS in the outlet was higher than the TSS concentration at the basin inlet, suggesting sediment re-suspension. In general SBs managed high flows during wet weather events, but were not effective in capturing particulates. This paper discusses the need for Best Management Practices (BMPs) for the design of SBs that reflect contemporary concerns for management of particle removal and to control the release of particulate-bound metals. This paper also evaluates the water quality impacts of naturally occurring acidic drainages into SBs, as several acidic seeps with pH in the range of 5-6 and having high dissolved concentrations of metals (Fe, Mn, Mg and Ca), sulfate and phosphate were observed draining into the SBs.  相似文献   

14.
Water quality monitoring programs across multiple disciplines use total suspended solids (TSS), and volatile suspended solids (VSS), to assess potential impairments of surface water and groundwater. While previous methods for instream filtering have been developed, the need for rapid, cost‐effective, high volume sampling has increased with the need to verify and supplement data produced by sondes and instantaneous data loggers. We present an efficient method to filter water instream with a portable drill pump that results in reduced sample processing time, and potentially reduced error associated with sample transportation, preservation, contamination, and homogenization. This technical note outlines the advantages of filtering instream vs. in the laboratory. It also compares TSS and VSS concentrations filtered with a drill pump vs. standard filtration methods with a vacuum pump as outlined by USEPA methods 160.2 and 160.4. Samples were collected at 4 sites and filtered in the field, or transported to the laboratory and filtered within 12 or 24 h of collection. Overall TSS and VSS samples filtered instream with a drill pump vs. in the laboratory produced similar concentrations with a similar range in variability for each method. Sample filtering with a drill pump decreased processing time by five minutes per sample.  相似文献   

15.
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2= 0.7, p = 0.005, range = 4.0-10.1 mg L(-1); ISS: R2= 0.71, p = 0.004, range = 2.04-7.3 mg L(-1)); dissolved organic carbon (DOC) concentration (R2= 0.79, p = 0.001, range = 1.5-4.1 mg L(-1)) and soluble reactive phosphorus (SRP) concentration (R2= 0.75, p = 0.008, range = 1.9-6.2 microg L(-1)) decreased with increasing disturbance intensity; and ammonia (NH4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2= 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.  相似文献   

16.
Abstract: A study was conducted to determine the effects of three land covers (sunn hemp –Crotalaria juncea, sudex, a sorghum‐sudangrass hybrid –Sorghum bicolor x S. bicolor var. sudanese, and common oats –Avena sativa) planted as vegetative filter strips on the reduction of sediment and nutrient loading of surface runoff within the Kaika‐Waialua watershed on the island of Oahu, Hawaii. Runoff samples were collected and analyzed for total suspended solids (TSS), total dissolved solids (TDS), phosphorous, and three forms of nitrogen (nitrate, ammonium, total nitrogen). Study results show that during seven out of 10 runoff events, the three cover crop treatments significantly reduced TSS as compared to the fallow treatment. Average removal efficiencies were 85, 77, and 73% for oats, sunn hemp, and sudex, respectively, as compared to the fallow treatment. Nutrient concentrations were low with phosphorous concentrations, lower than 1 (μg/ml) for all treatments, and total nitrogen (TN) concentrations below 7 (μg/ml) except in the sunn hemp treatment, where TN concentrations were less than 10 (μg/ml). Results of analysis of TDS showed that the cover crop treatments did not decrease dissolved solids concentrations in comparison with the fallow treatment. Analysis of nutrient concentrations in runoff samples did not detect any significant decreases in phosphorous, nitrogen, ammonium, or TN concentrations in comparison to the fallow treatment. However, a significant increase in TN concentrations in the sunn hemp treatment was detected and showed the nitrogen fixing capacity of sunn hemp. No treatment effects on runoff volume were detected, and runoff volumes were directly correlated with rainfall amounts showing no crops significantly impacted soil infiltration rates. These results were attributed to extremely low soil hydraulic conductivities (0.0001‐7 cm/day at the soil surface, 15 and 30 cm below the soil surface). This study showed that cover crops planted as vegetative filters can effectively reduce sediment loads coming from idle and fallow fields on moderately steep volcanically derived highly weathered soils.  相似文献   

17.
Abstract: This paper describes the construction and testing of a device for pumping water samplers that collects suspended sediment samples by moving the intake vertically to keep it at the same proportion of flow depth. The device uses a simple sprocket mechanism that can be mounted vertically on the downstream side of culverts and bridge pilings to protect against damage from floating debris during storms. Suspended sediment samples collected from an urban stream with the depth‐proportional device were compared with manual samples taken with a depth‐integrated sampler. Scatter in the relationship between pumped and manual samples (R2 = 0.76) are probably explained by horizontal variability in concentrations, poor mixing associated with lateral sediment inputs from construction site erosion, the downstream orientation of the intake, and the failure of the concentration at 60% of the flow depth to match the average vertical concentration.  相似文献   

18.
Suspended solids or sediments can be pollutants in rivers, but they are also an important component of lotic food webs. Suspended sediment data for rivers were obtained from a United States–wide water quality database for 622 stations. Data for particulate nitrogen, suspended carbon, discharge, watershed area, land use, and population were also used. Stations were classified by United States Environmental Protection Agency ecoregions to assess relationships between terrestrial habitats and the quality and quantity of total suspended solids (TSS). Results indicate that nephelometric determinations of mean turbidity can be used to estimate mean suspended sediment values to within an order of magnitude (r2 = 0.89). Water quality is often considered impaired above 80 mg TSS L–1, and 35% of the stations examined during this study had mean values exceeding this level. Forested systems had substantially lower TSS and somewhat higher carbon-to-nitrogen ratios of suspended materials. The correlation between TSS and discharge was moderately well described by an exponential relationship, with the power of the exponent indicating potential acute sediment events in rivers. Mean sediment values and power of the exponent varied significantly with ecoregion, but TSS values were also influenced by land use practices and geomorphological characteristics. Results confirm that, based on current water quality standards, excessive suspended solids impair numerous rivers in the United States.  相似文献   

19.
ABSTRACT: Spatial variation of five water quality variables were analyzed using composite water samples collected periodically from eight small watersheds (11.4–71.6 km2) in forested East Texas during 1977 through 1980. Based on 31 observations during the four-year period the average yield of nitrate-nitrite nitrogen (NNN), total kjeldahl nitrogen (TKN), total phosphorus (PO4), chloride (CHL), and total suspended sediment (TSS) were 1.43, 21.96, 3.09, 50.11, and 90.39 ka/ha/yr, respectively. Compared to the water quality standards of the U.S. Environmental Protection Agency (1976) and the Texas Department of Water Resources (1976) for CHL, TSS, and NNN, none of the observations exceeded the limits for public water supplies. The study showed that forested watersheds normally yielded stream flow with better quality than that from agricultural watersheds. Watersheds of greater percent of pasture area, mean slope, stream segment frequency, and drainage density produced greater concentrations for these five chemical parameters in water samples. Meaningful equations were developed for estimating mean average yields for each chemical parameter for each watershed with R2 ranging from 0.77 to 0.96 and standard error of estimates from 17 to 33 percent of the observed means.  相似文献   

20.
ABSTRACT: Urban storm water data from four catchments near Miami, Florida, were collected and compiled by the U.S. Geological Survey and were used for testing the applicability of deterministic modeling for characterizing storm water flows from small land use areas. The four sites were:
    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号