首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Net precipitation under old growth Douglas fir forest in the Bull Run Municipal Watershed (Portland, Oregon) totaled 1739 mm during a 4Cbweek period, 387 mm more than in adjacent clearcut areas. Expressing data on a full water year basis and adjusting gross precipitation for losses due to rainfall interception suggest fog drip could have added 882 mm (35 in) of water to total precipitation during a year when precipitation measured 2160 mm in a rain gage in a nearby clearing. Standard rain gages installed in open areas where fog is common may be collecting up to 30 percent less precipitation than would be collected in the forest. Long term forest management (Le., timber harvest) in the watershed could reduce annual water yield and, more importantly, summer stream flow by reducing fog drip.  相似文献   

2.
ABSTRACT: Road building, clearcutting 25 percent of the watershed, and slash disposal by broadcast burning or by natural decomposition caused changes in water quality of two small streams in the Bull Run Watershed in Oregon, which supplies water to the Portland, Oregon, metropolitan area. Concentrations of suspended sediment increased slightly, primarily owing to construction of a permanent logging road that crossed streams. Changes in nutrient cycling occurred due to logging and slash disposal in both watersheds where cutting was done. NO3-N concentrations, which increased most where logging residue was left to decompose naturally, increased more than sixfold and commonly exceeded 100 pg/i during the October-June high-flow season for seven years after logging. Where logging slash was broadcast burned, NO3-N concentrations increased roughly fourfold, but rarely exceeded 50 μg/l, and increases had mostly disappeared six years after slash burning. Changes in outflows of cations and other anions were not apparent. Annual maximum stream temperatures increased 2–3°C after logging, but temperature increases had mostly disappeared within three years as vegetation regrowth shaded the streams.  相似文献   

3.
4.
ABSTRACT: Spatial distribution of soil and water properties and the correlations between them and crop yield were determined for a natural rainfall environment. Hydraulic conductivity, soil texture, water retention, and soil-water flux were variables used to investigate their relationship to crop yield using multiple regression techniques. Variations in crop yields on a watershed with a 3 to 4 percent slope and moderately erosive soils were related to soil-water characteristics and soil properties along slope and with depth. Climatic conditions to sustain crop growth and yield ranged from inadequate soil water in 1983 to adequate soil water in 1984. Crop yield was predicted with models using both available and measured soil-water content. Available water content provided a better model for the prediction of water yield and does not require field measurements of actual soil-water content. Soil water holding capacity was more significant for predicting crop yield in soils with moderate to high silt content than infiltrability of water into the soil.  相似文献   

5.
ABSTRACT: Two intermittent streams on oak-hickory watersheds in southern Illinois were gaged with a V-notch weir and sampled with an automatic water sampler. Baseline data was collected for a period of three years. Flow volume showed large variations between years and watersheds. Water samples were analyzed for Na, K, Ca, Mg, ortho-P, and NO3-N. Water quality was consistently high, but there were significant differences between the watersheds during the calibration period. One watershed was clearcut in November 1979. One year of postharvest data has been analyzed. Flow volume increased 95 percent, but there was no evidence of increased sedimentation. There were significant increases in the stream water concentrations of K, Mg, and NO3-N of 18 percent, 8 percent, and 274 percent, respectively. Nutrient budgets for the site were not adversely affected by the harvest. The clearcutting operation appears to have had a small impact on the watershed due to minimal disturbance during the logging and below normal precipitation the first year following the harvest.  相似文献   

6.
ABSTRACT: The impact of forests on water has- been a subject of argument for more than a century. It still is; and many studies conform that there is no single right answer in the debate. In the Lake States, clearcutting natural peatlands will not change annual stream-flow nor will it seriously impact water quality if logging is done on frozen soils. However, clearcutting will cause water tables to fluctuate more, ranging from 9 cm higher to 19 cm lower than in peatlands with mature forests. Clearcutting upland hardwoods or conifers will increase annual strearnflow by 9 to 20 cm (a 30- to 80-percent increase). Streamfiow returns to preharvest levels in 12 to 15 years. Annual peak flows are at least doubled and snowmelt flood-peak increases may persist for 15 years. Water quality is not widely impacted, but operating logging equipment in stream channels will cause channel clogging by filamentous algae and loss of fish habitat. Permanent changes from forest to agricultural and urban land use on two-thirds or more of a watershed will significantly increase the size of flood peaks in the 2- to 30-year return interval storm or snowmelt.  相似文献   

7.
Western Washington and western Oregon comprise a water-rich region that has a very uneven annual distribution of both precipitation and streamflow. Highest demand for water coincides with lowest streamflow levels between July 1 and September 30 when less than 5 percent of annual water yield occurs. Increases in annual water yield in small, experimental watersheds in the region have ranged up to 600 mm after entire watersheds were logged and up to 300 mm in watersheds that were 25 to 30 percent logged. Most of the increase has occurred during the fall-winter rainy season, and yield increases have been largest during the wettest years. Estimated sustained increases in water yield from most large watersheds subject to sustained yield forest management are at best only 3-6 percent of unaugmented flows. Realistically, watersheds in this region will not be managed to produce more water. Water yield augmentation will continue to be only a small and variable by-product of logging. The utility of water yield augmentation is limited by its size and by its occurrence relative to the time of water demand. In some local areas, reduction of fog interception and drip or establishment of riparian phreatophytic hardwoods may reduce summer flows.  相似文献   

8.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

9.
ABSTRACT: Policies to encourage brush management are under consideration as a means to address the water scarcity issue in Texas. Additional water can be generated by treating some of the 100-million-plus acres of brush-infested rangelands in Texas. Evidence of water yield benefits are, however, tentative at this time. Economic investigations based on available data show the potential desirability of brush management but also show benefits to be critically dependent on added water yield, value, and cost-sharing policy. Wildlife, water rights, and environmental issues are also important considerations. The lack of research information on likely impacts makes it difficult to choose among alternative policies for encouraging brush management. More research on this potential opportunity is needed.  相似文献   

10.
With the exception of the Sierra-Cascade mountain ranges, the Rocky Mountain chain is the only portion of the western United States that consistently yields more than 3 cm of flow annually. Ten to 15 percent of the land mass in the region produces the majority of the total flow. This paper addresses the opportunities for increasing flow through forest manipulation, and summarizes the research base that has yielded the current “state of the art” understanding of how snow pack and vegetation management can influence water yield. The optimal harvest design appears to consist of small openings, irregularly shaped, and about 3 to 8 tree heights in width parallel to the wind.  相似文献   

11.
ABSTRACT: A water supply network optimization model called MODSIM3 is presented as a decision-support tool for aiding city staff in determining how best to utilize and exchange existing and potential water supplies with other users in a river basin. The model is applied to the City of Fort Collins, Colorado, water supply system as a means of determining optimum ways the City can utilize direct flow rights, storage rights, and exchangeable waters from various sources. Results clearly confirm both the benefits of the use of exchanges and the value of MODSIM3 as a water supply planning and management tool.  相似文献   

12.
The demand for more water is increasing throughout the country. Research on upland watersheds clearly demonstrates that water yield can be increased using forest and range management practices. Based on the experience of the past several decades and a review of six papers in a recent AWRA series on water yield augmentation through vegetation management, the following issues and concerns are discussed: predicting increased yields from large basins; economic evaluation of additional flows; court acceptance and need for system models; the legal question of ownership and transferability of increased yields; and management emphasis on private and federal lands. The immediate potential for water yield augmentation is on carefully selected watersheds that have the bio-physical potential to produce high value water under environmentally acceptable multiple use management. We predict water yield management on a broader scale will result from increased pressures to solve the legal and economic issues involved.  相似文献   

13.
ABSTRACT: The City of Portland's stormwater management program, winner of EPA's Environmental Excellence Award for 1996, is committed to partnership-based, cost-effective, “green” approaches to healthy neighborhoods and water quality. The stormwater program encourages innovative, non-structural pollution reduction techniques like native landscaping, stormwater pollution reduction bioswales and ponds, and public involvement and education. Effectiveness of stormwater best management practices (BMPs) has been difficult to determine on a citywide basis. Recognizing this problem, the City of Portland launched the Parkrose Pilot Project in 1994 to test the effectiveness of a wide range of BMPs in a small watershed in north Portland, the Parkrose catchment, and monitor the results prior to citywide implementation. This catchment was selected because of its small size (144 acres), its representative mix of land uses, and an extensive record of water quality monitoring data. This paper examines the City's strategy in selecting the Parkrose study area as a pilot watershed, the BMPs chosen for use in the watershed, and the results of the program to date. Final success of the Parkrose project will be gauged by the attainment of measurable pollution reduction within the catchment while providing opportunities for meaningful participation by the local community in achieving water quality. Involvement by private citizens in the community is crucial to the success of the project and to ensure compliance with the federal mandate to reduce pollutants to the maximum extent practicable.  相似文献   

14.
Rapid industrialization and population growth in the north Mexican desert city of Ciudad Juarez are placing a serious strain on the city's municipal water resources. Water deliveries and service area have more than doubled over the past decade, and plans for additional expansion are presently being implemented. This expansion is already contributing to water table declines and salinity increases in the Mexican portion of the Heuco Bolson, the sole source of water for the city. Continued mining of the limited fresh water reserves should produce serious water supply problems in the near future. New estimates of future water consumption incorporated into a digital aquifer simulation model indicate that these problems may show up much sooner than was anticipated in previous investigations. The results of this study point to the need to accelerate the gathering of basic data on alternative water resources. The problems faced by Cd. Juarez are illustrative of the kinds of difficulties likely to confront other rapidly developing cities of the arid zone.  相似文献   

15.
ABSTRACT Financing and repayment provisions of western water projects effect transfers of income among federal taxpayers, electric power users, local water users, and property owners. We use the Bonneville Unit of the Central Utah Project as a case study in the distribution of municipal and industrial water costs. We examine the distribution of costs among taxpayers and water users in different political/geographical jurisdictions, and how this distribution is affected by water law, cost allocation procedures, and the choice of revenue source for local repayment of reimbursable costs. In light of the magnitude of distributional effects of present water policy, we conclude that lack of open debate on water issues is unfortunate. We conclude with speculation on the relationship of western water policy to the motivation of western water leaders who are instrumental in its formulation  相似文献   

16.
ABSTRACT: Three processes were examined as causing snowpack changes in forest clearings. Two of the three contribute to increases and one counteracts by reducing snowpack. The two that increase snowpack are redistribution and decreased loss to interception. Snow evaporation from a clearing counteracts snowpack increases. Research has indicated that as vegetation density increases, so too does the loss to interception. As snow in the canopy reaches the limit that the canopy can hold (the threshold amount) evaporation increases. Aerodynamics of the forest canopy were studied as well. As timber is cut, wind patterns are disturbed, creating disruptions in the wind velocity gradient depositing snow in openings. This redistribution leads to an increased snow water equivalent and augments runoff. Snow evaporation was shown to increase proportionally with opening size. Evaporation offsets the water yield gains derived from forest cut. It was found that this offset is inclusive to the measurements of water yield changes in experimental forests. An optimal size of harvest block may be five tree heights in width as suggested by numerous studies.  相似文献   

17.
ABSTRACT: Recent stream survey data (1989–1993) from 31 stream segments of 21 streams within the upper South Umpqua Watershed Oregon were compared to 1937 stream survey data collected from these same stream segments. Current low-flow wetted stream widths of 22 of the 31 surveyed stream segments were significantly different than in 1937; 19 stream segments were significantly wider while the remaining three stream segments were significantly narrower. In only 1 of 8 tributaries to the South Umpqua River which had headwaters within land designated wilderness area did low-flow stream channel width increase since 1937. Conversely, 13 of the 14 tributaries to the South Umpqua River which originated from lands designated as timber emphasis were significantly wider than in 1937. The observed change in stream width was linearly related to timber harvest (r2= 0.44), road density (r2= 0.45), and the amount of large organic debris remaining within the active stream channel (r2= 0.43). These findings suggest that timber harvest and road construction may have resulted in changes in channel characteristics. These channel changes may also be a factor in the observed decline of three of the four populations of anadromous salmonids within the basin.  相似文献   

18.
ABSTRACT: The Salmon Creek Watershed drains 325 km2 of forested terrain in the Cascade Mountains of western Oregon. Over a 30–year period (from 1955 to 1984) average daily maximum and minimum stream temperatures, calculated from the 10 warmest days of each year, have risen 6°C and 2°C, respectively. In contrast, a small decrease in maximum air temperatures was found over the same period. Regression analysis indicated a highly significant (p < 0.01) relationship between a cumulative index of forest harvesting and maximum stream temperatures. Maximum temperatures also tended to increase for several years following major peak flow events. The interaction between harvest activity (logging and road construction), changing forest and riparian management practices and the occurrence of natural hydrologic events (peak flows and associated mass soil movements) tend to obscure specific cause-and-effect relationships regarding long-term changes in maximum stream temperature.  相似文献   

19.
ABSTRACT: With the increase in water demand in Texas, attention has turned to improving water yield by brush control on rangeland watersheds. Several hydrologic models have been developed for either farmland or rangeland. However, none of the models were specifically developed to assess the impact of brush control on rangeland water yield. Yet, modeling the impact of brush control on water yield needs to be considered if alternative techniques are to be compared. Two models, Ekalaka Rangeland Hydrology and Yield Model (ERHYM-II) and Simulator for Water Resources on Rural Basins (SWRRB) were selected. The Soil Conservation Service curve number (SCS-CN) method is used in both models to predict surface runoff from each rainfall event. The major differences between the ERHYM-II and SWRRB models are the evapotranspiration, soil water routing, and plant growth components. The models were evaluated on brush-dominated and chemically and mechanically brush-controlled range watersheds in Texas. Results indicated that both models were capable of simulating soil water and water yield from brush dominated and chemically brush-controlled range watersheds. The models were not able to predict water yield from the mechanically brush-controlled (root plowed) watershed with acceptable accuracy. The depressions that were caused by root plowing stored surface runoff and reduced water yield from the watershed. Information about the size of depressions was not available for further model evaluation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号