首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Downstream and Coastal Impacts of Damming and Water Abstraction in Africa   总被引:1,自引:0,他引:1  
Anthropogenic factors associated with damming and water abstraction, and the resultant environmental pressures, are reviewed in six African river catchments using records and forecasts of climatic, demographic, and land-use change. Changes in the states of the flow regime through catchment drainage systems to the coastal sea are considered in conjunction with climate change and other human-induced pressures. The impacts of these changes on downstream and coastal environments and their communities are described in past, present, and future perspectives. Linkages between the issues and the pressures of damming and water abstraction are appraised and scientific, policy, and management responses proposed aimed at remedying existing and perceived future negative impacts. The study proposes that there is a need to integrate catchment and coastal management to account for the whole water flow regime together with its human dimensions. Management priorities relating to the operation of existing damming and abstraction schemes and planning of future schemes include the following: consideration of ways in which water discharges could be adjusted to provide improvements in downstream and coastal environmental and socioeconomic conditions; addressing the problem of sediment trapping impacting on the sustainability of dam reservoirs; and assessment of downstream and coastal impacts of future schemes in the light of climate change forecasts.  相似文献   

2.
Assessing Land-Use Impacts on Natural Resources   总被引:3,自引:1,他引:2  
/ Much information is available on changes that occur in natural resources from both spatially-explicit data on environmental conditions and models of the interactions of these conditions and resources with human activities. The strategy for assessing land-use impacts on natural resources developed in this paper provides a framework for using relevant data and models to address questions of how management practices can promote both use and protection of resources. This assessment strategy integrates spatially explicit environmental data using geographic information systems (GIS) with computer models that simulate changes in land cover in response to land-use impacts. The computer models also simulate susceptibility of species to changes in habitat suitability and landscape patterns. The approach is applied to management of limestone barrens on the Oak Ridge Reservation in East Tennessee. Potential limestone barrens habitats are identified by overlaying appropriate soils, geology, slope, and land-use/land-cover conditions. Their validity is tested against known sites containing rare species that occur in these habitats. The location of habitats at risk in the aftermath of human activities is determined by using an available area model that identifies the size and proximity of sites that particular types of species can no longer use as habitat. The resulting risk map can be used in land management planning. The approach uses readily available in situ and remotely sensed data and is applicable to a wide range of locations and land-use scenarios. This approach can be refined based on needs identified by land managers and on the sensitivity of the results to the resolution of available resource information.KEY WORDS: Land management; Assessment; Habitat characterization; Limestone barrens; Ecological modeling; Geographic information systems  相似文献   

3.
ABSTRACT: The Pacific Northwest (PNW) regional assessment is an integrated examination of the consequences of natural climate variability and projected future climate change for the natural and human systems of the region. The assessment currently focuses on four sectors: hydrology/water resources, forests and forestry, aquatic ecosystems, and coastal activities. The assessment begins by identifying and elucidating the natural patterns of climate vanability in the PNW on interannual to decadal timescales. The pathways through which these climate variations are manifested and the resultant impacts on the natural and human systems of the region are investigated. Knowledge of these pathways allows an analysis of the potential impacts of future climate change, as defined by IPCC climate change scenarios. In this paper, we examine the sensitivity, adaptability and vulnerability of hydrology and water resources to climate variability and change. We focus on the Columbia River Basin, which covers approximately 75 percent of the PNW and is the basis for the dominant water resources system of the PNW. The water resources system of the Columbia River is sensitive to climate variability, especially with respect to drought. Management inertia and the lack of a centralized authority coordinating all uses of the resource impede adaptability to drought and optimization of water distribution. Climate change projections suggest exacerbated conditions of conflict between users as a result of low summertime streamfiow conditions. An understanding of the patterns and consequences of regional climate variability is crucial to developing an adequate response to future changes in climate.  相似文献   

4.
The cumulative dimensions of impact in resource regions   总被引:1,自引:0,他引:1  
The development of mineral and energy resources worldwide has placed pressure on regional environments, economies and communities. The cumulative impacts, or cumulative effects, arising from overlapping development have stretched political systems that have traditionally been geared toward the regulation and management of individual resource developments, presenting challenges for policy makers, resource developers and civil society actors. An equally challenging task has been realisation of the potential development dividends of mineral and energy resources in the areas of business development, infrastructure, human development or the management of resource revenues. This paper introduces a special issue on ‘Understanding and Managing Cumulative Impacts in Resource Regions’. The special issue interrogates the effectiveness of new and traditional policy responses, explores methods and strategies to better respond to cumulative impacts, and details practical examples of collaborative and coordinated approaches. Papers cover a range of environmental, economic and social issues, geographical regions, commodities, and conceptual approaches. This introductory paper introduces the cumulative impact issues that have manifest in resource regions, critically appraises current conceptions of cumulative impacts, and details management and policy responses to address the cumulative dimensions of impact.  相似文献   

5.
The US Department of Energy (DOE) plans to conduct site characterization studies at Yucca Mountain, Nevada, to determine if the location is a suitable site for a nuclear waste repository. In lieu of traditional environmental review in accordance with the National Environmental Policy Act of 1969, the DOE is relying on an environmental assessment (EA) mandated by the Nuclear Waste Policy Act of 1982 as the cornerstone of its environmental program for the Yucca Mountain Project. Because of statutory restrictions, the EA is not based on comprehensive baseline information. Neither does it address fundamentals of environmental analysis such as ecological integrity and assessment of cumulative impacts. Consequently, the present environmental program for Yucca Mountain reflects decisions made without complete information and integrated environmental review. The shortcomings of the program risk compromising the natural integrity of Yucca Mountain and invalidating future assessment of the ability of a nuclear waste repository located at the site to protect the environment. Significant improvements are needed in the repository siting program before it can serve as a model of how society can evaluate the long-term environmental consequences of advanced technologies, as has been suggested.  相似文献   

6.
Space and Time Scales in Human-Landscape Systems   总被引:2,自引:0,他引:2  
Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.  相似文献   

7.
Including past and present impacts in cumulative impact assessments   总被引:6,自引:0,他引:6  
Environmental concerns such as loss of biological diversity and stratospheric ozone depletion have heightened awareness of the need to assess cumulative impacts in environmental documents. More than 20 years of experience with the National Environmental Policy Act (NEPA) have provided analysts in the United States with opportunities for developing successful techniques to assess site-specific impacts of proposed actions. Methods for analyzing a proposed action's incremental contribution to cumulative impacts are generally less advanced than those for project-specific impacts.The President's Council on Environmental Quality (CEQ) defines cumulative impact to include the impacts of past, present and reasonably foreseeable future actions regardless of who undertakes the action. Court decisions have helped clarify the distinction between reasonably foreseeable future actions and other possible future actions. This paper seeks to clarify how past and present impacts should be included in cumulative impact analyses.The definition of cumulative impacts implies that cumulative impact analyses should include the effects of all past and present actions on a particular resource. Including past and present impacts in cumulative impact assessments increases the likelihood of identifying significant impacts. NEPA requires agencies to give more consideration to alternatives and mitigation and to provide more opportunities for public involvement for actions that would have significant impacts than for actions that would not cause or contribute to significant impacts. For an action that would contribute to significant cumulative impacts, the additional cost and effort involved in increased consideration of alternatives and mitigation and in additional public involvement may be avoided if the action can be modified so that its contributions to significant cumulative impacts are eliminated.Managed by Lockheed Martin Energy Research Corporation under contract DE-AC05-84OR21400 with the US Department of Energy.  相似文献   

8.
Many of today's most urgent environmental problems arise from increasing volumes of worldwide production and consumption and the associated use of natural resources, including renewable and non-renewable raw materials, energy, water and land. Solid indicators to measure different dimensions of anthropogenic resource use are essential for designing appropriate policy measures for a sustainable management of these resources. Based on a brief review of the current state of the art of resource use indicators, this paper suggests a new set of complementary resource use indicators, combining existing measures for resource use. The suggested indicator set covers the core resource input categories of materials, water and land area and includes the output category of greenhouse gas emissions. This set can be applied consistently from the micro level of products and companies up to the macro level of countries and world regions. All suggested indicators take a life-cycle wide perspective on production and consumption activities. This set of indicators deals with the issue of the overall scale of the human production and consumption system. It can be regarded as the general indicator framework, based on which more specific indicators, for example, on different environmental impacts related to natural resource use, can be calculated.  相似文献   

9.
This paper assesses the status of coastal zones in the context of expected climate change and its related impacts, as well as current and future socioeconomic pressures and impacts. It is argued that external stresses and shocks relating to sea-level rise and other changes will tend to exacerbate existing environmental pressures and damage in coastal zones. Coastal zones are under increasing stress because of an interrelated set of planning failures including information, economic market, and policy intervention failures. Moves towards integrated coastal zone management are urgently required to guide the coevolution of natural and human systems. Overtly technocentric claims that assessments of vulnerability undertaken to date are overestimates of likely future damages from global warming are premature. While it is the case that forecasts of sea-level rise have been scaled down, much uncertainty remains over, for example, combined storm, sea surge, and other events. In any case, within the socioeconomic analyses of the problem, resource valuations have been at best only partial and have failed to incorporate sensitivity analysis in terms of the discount rates utilized. This would indicate an underestimation of potential damage costs. Overall, a precautionary approach is justified based on the need to act ahead of adequate information acquisition, economically efficient resource pricing and proactive coastal planning.  相似文献   

10.
Legitimizing Fluvial Ecosystems as Users of Water: An Overview   总被引:6,自引:0,他引:6  
We suggest that fluvial ecosystems are legitimate users of water and that there are basic ecological principles guiding the maintenance of long-term ecological vitality. This article articulates some fundamental relationships between physical and ecological processes, presents basic principles for maintaining the vitality of fluvial ecosystems, identifies several major scientific challenges and opportunities for effective implementation of the basic ecological principles, and acts as an introduction to three specific articles to follow on biodiversity, biogeochemistry, and riparian communities. All the objectives, by necessity, link climate, land, and fresh water. The basic principles proposed are: (1) the natural flow regime shapes the evolution of aquatic biota and ecological processes, (2) every river has a characteristic flow regime and an associated biotic community, and (3) aquatic ecosystems are topographically unique in occupying the lowest position in the landscape, thereby integrating catchment-scale processes. Scientific challenges for the immediate future relate to quantifying cumulative effects, linking multidisciplinary knowledge and models, and formulating effective monitoring and assessment procedures. Additionally, forecasting the ecological consequences of changing water regimes is a fundamental challenge for science, especially as environmental issues related to fresh waters escalate in the next two to three decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号