首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The discovery of the Comstock Lode in western Nevada in 1859 initiated the use of liquid mercury (Hg) or “quicksilver” to remove gold (Au) and silver (Ag) from crushed ore. Today, Hg is present in historic mill tailings piles, in alluvial deposits adjacent to the Carson River, and in Lahontan Reservoir. Mercury concentrations in Carson River water have been reported as high as 61 μg/L by the U.S. Geological Survey. Fish from Lahontan Reservoir have methylmorcury (MeHg) concentrations as much as four times the 1.0 μg/g limit for human consumption. Since more than 95 percent of total Hg in water can be associated with particulates, the transport of sediment must be quantified to understand the fate of Hg in the system. By linking the RIVMOD hydrodynamic model with the WASP5 water quality model, and using suspended sediment rating curves along with bedload transport equations, reliable predictions of sediment transport can be made. Measured suspended sediment data from the Carson River, and an estimate of annual sediment loading to Lahontan Reservoir, were used to create a calibrated sediment transport model. Model simulations predicted the long term transport of sediment into Lahontan Reservoir, the transport of sediment into Lahontan Reservoir during a flood year (1986 water year), and concentrations of total Hg in the Carson River using an estimate of sediment Hg concentrations. This research will eventually be used with an Hg model to predict the fate of Hg in the river and reservoir system.  相似文献   

2.
It has been frequently demonstrated that mercury (Hg) concentrations in fish rise in newly constructed hydroelectric reservoirs in the Northern Hemisphere. In the present work, we studied whether similar effects take place also in a tropical upland reservoir during impoundment and discuss possible causes and implications. Total Hg concentrations in fish and several soil and water parameters were determined before and after flooding at Rio Manso hydroelectric power plant in western Brazil. The Hg concentrations in soil and sediment were within the background levels in the region (22-35 ng g(-1) dry weight). There was a strong positive correlation between Hg and carbon and sulphur in sediment. Predatory fish had total Hg concentrations ranging between 70 and 210 ng g(-1) f.w. 7 years before flooding and between 72 and 755 ng g(-1) f.w. during flooding, but increased to between 216 and 938 ng g(-1) f.w. in the piscivorous and carnivorous species Pseudoplatystoma fasciatum, cachara, and Salminus brasiliensis, dourado, 3 years after flooding. At the same time, concentrations of organic carbon in the water increased and oxygen concentrations decreased, indicating increased decomposition and anoxia as contributing to the increased Hg concentrations in fish. The present fish Hg concentrations in commonly consumed piscivorous species are a threat to the health of the population dependent on fishing in the dam and downstream river for sustenance. Mercury exposure can be reduced by following fish consumption recommendations until fish Hg concentrations decrease to a safe level.  相似文献   

3.
Organic carbon bioreactors provide low-cost, passive treatment of a variety of environmental contaminants but can have undesirable side effects in some cases. This study examines the production of methyl mercury (MeHg) in a streambed bioreactor consisting of 40 m3 of wood chips and designed to treat nitrate (NO?) in an agricultural drainage ditch in southern Ontario (Avon site). The reactor provides 30 to 100% removal of NO?-N concentrations of 0.6 to 4.4 mg L(-1), but sulfate (SO?(2-)) reducing conditions develop when NO? removal is complete. Sulfate reducing conditions are known to stimulation the production of MeHg in natural wetlands. Over one seasonal cycle, effluent MeHg ranged from 0.01 to 0.76 ng L(-1) and total Hg ranged from 1.3 to 3.4 ng L(-1). During all sampling events when reducing conditions were only sufficient to promote NO?(-) reduction (or denitrification) ( = 5, late fall 2009, winter 2010), MeHg concentrations decreased in the reactor and it was a net sink for MeHg (mean flux of -5.1 μg m(-2) yr(-1)). During all sampling events when SO?(2-) reducing conditions were present ( = 6, early fall 2009, spring 2010), MeHg concentrations increased in the reactor and it was a strong source of MeHg to the stream (mean flux of 15.2 μg m(-2) yr(-1)). Total Hg was consistently removed in the reactor (10 of 11 sampling events) and was correlated to the total suspended sediment load ( r2 = 0.69), which was removed in the reactor by physical filtration. This study shows that organic carbon bioreactors can be a strong source of MeHg production when SO?(2-) reducing conditions develop; however, maintaining NO?-N concentrations > 0.5 mg L suppresses the production of MeHg.  相似文献   

4.
密云水库上游土壤重金属污染调查评价   总被引:5,自引:0,他引:5  
文章对密云水库周边及上游地区(北京境内)的污染状况作了初步评价。研究结果发现密云水库周边及上游地区重金属污染以Cr和Hg为主,丰亡牛河上游为污染最严重地区,清水河上游、潮河下游放马峪地区、德田沟-崎峰茶地区受Cr元素轻度污染。这些地区土壤重金属污染的主要原因是由于金属矿山不合理堆放的尾砂及废矿石等人为因素所致。  相似文献   

5.
A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.  相似文献   

6.
Abandoned mine tailings sites in semiarid regions remain unvegetated for extended periods of time and are subject to eolian dispersion and water erosion. This study examines the potential phytostabilization of a lead-zinc mine tailings site using a native, drought-tolerant halophyte, quailbush [Atriplex lentiformis (Torr.) S. Wats.]. In a greenhouse study germination, growth, and metal uptake was evaluated in two compost-amended mine tailings samples, K4 (pH 3) and K6 (pH 6) at 75, 85, 90, 95, and 100% mine tailings, and two controls, off-site and compost. Microbial community changes were monitored by performing MPN analysis of iron- and sulfur-oxidizing bacteria as well as heterotrophic plate counts. Results demonstrate that germination is not a good indicator for phytostabilization since it was only inhibited in the unamended K4 treatment. Plant growth was significantly reduced in 95 and 100% mine tailings, while growth in 75, 85, and 90% treatments was similar to the off-site control. Quailbush accumulated elevated levels of the nutrient metals Na, K, Mn, and Zn in the shoot tissues; however, metal accumulation was generally below the domestic animal toxicity limit. Initially, autotrophic population estimates were four to six logs higher than heterotrophic counts, indicating extremely stressed conditions. However, post-harvest, heterotrophic bacterial counts increased to normal levels (approximately 10(6) CFU g-1 dry tailings) and dominated the rhizosphere. Therefore, with compost amendment, quailbush has good potential as a native species candidate for phytostabilization of mine tailings in semiarid environments.  相似文献   

7.
The distribution of mercury (Hg) and the characteristics of its methylation were investigated in Wujiangdu (WJD) and Yinzidu (YZD) reservoirs in Guizhou province, China. The two reservoirs are characterized by high and low levels of primary productivity, respectively. Mercury species in water samples from depth profiles in both reservoirs and from interface water in the WJD were analyzed each season during 2007. The concentrations of total Hg (HgT(unf)) and methylmercury (MeHgT(unf)) in unfiltered water samples from the WJD varied from 3.0 to 18 pmol dm(-3) and from 0.17 to 15 pmol dm(-3), respectively; ranges were 2.0 to 9.5 pmol dm(-3) for HgT(unf) and 0.14 to 2.2 pmol dm(-3) for MeHgT(unf) in the YZD. Elevated methylmercury concentrations in water samples from the bottom water and water-sediment interface demonstrated an active net Hg methylation in the downstream reach of the WJD. There was no discernable Hg methylation occurring in the YZD, nor in the upstream and middle reaches of the WJD. The results suggest that high primary productivity resulting from cage aquaculture activities in the WJD is an important control on Hg methylation in the reservoir, increasing the concentrations of MeHg in water in the Wujiang River basin Southwestern China.  相似文献   

8.
9.
Nearly all Hg in vegetation is derived directly from the atmosphere. Mass of Hg in forest vegetation (roughly 0.1 mg m(-2)) is about an order of magnitude smaller than that in the forest floor (1 mg m(-2)) and two orders of magnitude smaller than that in the mineral soil (10 mg m(-2)). Mass of Hg in peat (20 mg m(-2)) is greater than the sum of that in mineral soil and the forest floor; wetlands usually sequester more Hg than associated uplands. The strong relationship of Hg to organic matter, associated with binding by reduced S groups, is fundamental to understanding Hg distribution and behavior in terrestrial systems. The stoichiometry of the Hg-C relationship varies; Hg-S relationships, though less variable, are not constant. Because of the Hg-organic matter link, landscape conditions that lead to differential soil organic matter accumulation are likely to lead to differential Hg accumulation. The ratio of methylmercury (MeHg) to total Hg is generally low in both vegetation (near 1.5%) and soil (<1%), but areas of poorly drained soils and wetlands are sites of MeHg production. The annual emission of anthropic Hg from the 48 contiguous states of the USA (144 Mg) is two orders of magnitude less than the pool of Hg in forests of those states (30,300 Mg). Peatlands, less than 2% of total land area, sequester more than 20 times annual emissions (2930 Mg). If global climate change affects C storage it will indirectly affect Hg storage, having a major effect on the balance between emissions and sequestration and on the global Hg cycle.  相似文献   

10.
Abandoned mines are an important global concern and continue to pose real or potential threats to human safety and health including environmental damage/s. Very few countries had government mine regulation and reclamation policies until the latter part of the century where legal, financial and technical procedures were required for existing mining operations. Major reasons for mine closure may be mainly due to poor economies of the commodity making mining unprofitable, technical difficulties and national security. If the mine is abandoned, more often than not it is the government that shoulders the burden of clean-up, monitoring and remediation. The topic of abandoned mines is complex because of the associated financial and legal liability implications. Abandoned mercury mines have been identified as one of the major concerns because of their significant long-term environmental problems. Primary mercury production is still ongoing in Spain, Kyrgzystan, China, Algeria, Russia and Slovakia while world production declined substantially in the late 1980s. In the Philippines, the mercury mine located southeast of Manila was in operation from 1955 to 1976, before ceasing operation because of the decline in world market price for the commodity. During this time, annual production of mercury was estimated to be about 140,000 kg of mercury yearly. Approximately 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining and roughly 1,000,000 t of these calcines were dumped into nearby Honda Bay to construct a jetty to facilitate mine operations where about 2000 people reside in the nearby three barangays. In October, 1994 the Department of Health received a request from the Provincial Health Office for technical assistance relative to the investigation of increasing complaints of unusual symptoms (e.g. miscarriages, tooth loss, muscle weakness, paralysis, anemia, tremors, etc.) among residents of three barangays. Initial health reports revealed significant elevation of blood mercury levels exceeding the then recommended exposure level of 20ppb in 12 out of the 43 (27.9%) residents examined. The majority of the volunteers were former mine workers. In this study the abnormal findings included gingivitis, mercury lines, gum bleeding and pterydium. The most common neurologic complaints were numbness, weakness, tremors and incoordination. Anemia and elevated liver function tests were also seen in a majority of those examined. The assessment also revealed a probable association between blood mercury level and eosinophilia. The same association was also seen between high mercury levels and the presence of tremors and working in the mercury mine. To date, there are very limited environmental and health studies on the impact of both total and methylmercury that have been undertaken in the Philippines. Thus, this area of study was selected primarily because of its importance as an emerging issue in the country, especially regarding the combined effects of total and methylmercury low-dose and continuous uptake from environmental sources. At present the effects of total mercury exposure combined with MeHg consumption remain an important issue, especially those of low-dose and continuous uptake. Results of the study showed that four (4) species of fish, namely ibis, tabas, lapu-lapu and torsillo, had exceeded the recommended total mercury and methylmercury levels in fish (NV>0.5 microg/gf.w., NV>0.3 microg/gf.w., respectively). Saging and kanuping also exceeded the permissible levels for methylmercury. Total and methylmercury in canned fish, and total mercury in rice, ambient air and drinking water were within the recommended levels, however, additional mercury load from these sources may contribute to the over-all body burden of mercury among residents in the area. Surface water quality at the mining area, Honda Bay and during some monitoring periods at Palawan Bay exceeded total mercury standards (NV>0.002 ng/mL). Soil samples in two sites, namely Tagburos and Honda Bay, exceeded the EPA Region 9 Primary Remediation Goal recommended values for total mercury for residential purposes (NV>23 mg/kg). The hand to mouth activity among infants and children is another significant route for mercury exposure. Statistically significant results were obtained for infants when comparing the results after one year of monitoring for methylmercury levels in hair for both exposed and control sub-groups. Likewise, comparing the initial and final hair methylmercury levels among pregnant women/mothers in the exposed group showed statistically significant (p<0.05) results. Comparing the exposed and control sub-groups' mercury hair levels per sub-group showed statistically significant results among the following: (a) initial and final total mercury hair levels among children, (b) initial and final methylmercury hair levels among children, (c) final total mercury hair levels among pregnant women, (d) initial and final total mercury hair levels among mothers, and (e) initial and final methyl hair levels among mothers.  相似文献   

11.
Lichens are known to be bioaccumulators of atmospheric pollutants and are abundant in the Canadian arctic. Mining in this region may negatively impact the tundra communities and these impacts may be detected by increased accumulation of heavy metals, greenhouse gas constituents, and organic compounds in lichen tissue. The effect of sampling direction and distance from a diamond mine on bioaccumulation in three lichen species, Flavocetraria nivalis, Flavocetraria cucullata, and Cladina arbuscula, was investigated. Eight sample sites were located immediately adjacent to a diamond mine, one in each cardinal and ordinal direction, and six sample sites each were located 30 and 60 km from the mine (cardinal, NE, and SE). Thirty-three major and trace elements, sulfate (SO(4)), nitrate (NO(3)), ammonium (NH(4)), polycyclic aromatic hydrocarbons (PAH), and phthalates were analyzed in lichen tissue and soil. A significant interaction occurred between distance and direction from the mine. Highest concentrations of Al, Cr, Cu, Fe, Ni, Ti, and V in lichen were at the mine site regardless of direction. Highest concentrations for all other elements were at the mine in at least two directions. Although present in lichen tissue, there was no significant difference among sites for Hg, Mn, S, and three phthalates. PAHs were below detection limits in lichen tissue. The effect of direction was dependent on element and species, although concentrations of most elements were greatest east or southeast of the mine site. At distance from the mine, direction had less of an effect on concentrations. Elevated concentrations in tissue did not negatively impact lichen or plant cover or lichen richness. This research strongly suggests selection of sample sites and species can impact results and interpretation of data from air quality monitoring programs that use lichens as biomonitors.  相似文献   

12.
Risk of cadmium (Cd) in the human food chain in Cd-contaminated areas is often limited by phytotoxicity from zinc (Zn) that is associated with the Cd contamination. A semiarid area, 60 km downstream of a tin mine in Bolivia, was surveyed where irrigation with Cd-contaminated river water (65-240 microg Cd L(-1)) has increased median soil Cd to 20 mg kg(-1) while median soil Zn was only about 260 mg kg(-1). Cadmium concentrations in potato tubers increased from background values (0.05 mg kg(-1) dry wt.) in soils irrigated with spring water to a median value of 1.2 mg kg(-1) dry wt. in the affected area. Median concentration of Cd in soil solutions was 27 microg L(-1) and exceeded the corresponding value of Zn almost twofold. Soil-extractable chloride ranged from 40 to 1600 mg Cl(-) kg(-1) and was positively correlated with soil total Cd. Increasing soil solution Cl(-) decreased the solid-liquid distribution coefficient of Cd in soil. Soil total Cd explained 64% of the variation of tuber Cd concentration while only 3% of the variation was explained by soil extractable Cl(-) (n = 49). The estimated dietary Cd intake from potato consumption by the local population is about 100 microg d(-1) which exceeds the WHO recommended total daily intake. It is concluded that the food chain risk of Cd in the irrigation water of the semiarid area is aggravated by the association with Cl(-) and, potentially, by the relatively large Cd/Zn ratio.  相似文献   

13.
为分析铁尾矿路用对道路沿线土壤环境质量影响的程度,对铁尾矿化学成分及有害物质进行测定,以秦巴山区的山地黄棕壤作为道路建设的耕土环境,把铁尾矿按70%~90%的推荐比例掺入,铁尾矿中的重金属按照最不利的全浸入式扩散进行分析,对黄棕壤中重金属含量超过限制要求的重金属进行安全修复,使铁尾矿道路沿线黄棕壤的重金属含量满足限制要求。结果表明:铁尾矿硫化物含量高达到2.89%,不满足配制混凝土的硫化物限量要求;铁尾矿路用的土壤中重金属Cr最大含量103.24 mg/kg、Cu最大含量116.4 mg/kg,国评标准污染等级均为Ⅱ级,其余重金属元素含量都在国家标准正常范围以内;高生物量的非超富集植物、细菌微生物、城市的污泥、工业粉煤灰(5%粉煤灰+50%尾矿砂+45%黄褐土)能够很好修复重金属Cr、Cu污染的土壤;含钙类物质的钝化剂处置重金属Cr、Cu污染效果好,腐殖酸、凹凸棒土、膨润土可以钝化土壤中的重金属Cu;高生物量非超富集植物、微生物钝化剂联合使用,具有更好的修复效果;当控制铁尾矿掺加比例不超过73%时,铁尾矿道路沿线的土壤重金属含量能够满足国家标准限值的要求。  相似文献   

14.
Abstract: In 2003, the U.S. Geological Survey (USGS) National Water‐Quality Assessment (NAWQA) program and U.S. Environmental Protection Agency studied total mercury (THg) and methylmercury (MeHg) concentrations in periphyton at eight rivers in the United States in coordination with a larger USGS study on mercury cycling in rivers. Periphyton samples were collected using trace element clean techniques and NAWQA sampling protocols in spring and fall from targeted habitats (streambed surface‐sediment, cobble, or woody snags) at each river site. A positive correlation was observed between concentrations of THg and MeHg in periphyton (r2 = 0.88, in log‐log space). Mean MeHg and THg concentrations in surface‐sediment periphyton were significantly higher (1,333 ng/m2 for MeHg and 53,980 ng/m2 for THg) than cobble (64 ng/m2 for MeHg and 1,192 ng/m2 for THg) or woody snag (71 ng/m2 for MeHg and 1,089 ng/m2 for THg) periphyton. Concentrations of THg in surface‐sediment periphyton had a strong positive correlation with concentrations of THg in sediment (dry weight). The ratio of MeHg:THg in surface‐sediment periphyton increased with the ratio of MeHg:THg in sediment. These data suggest periphyton may play a key role in mercury bioaccumulation in river ecosystems.  相似文献   

15.
Soil pollution by lead, zinc, cadmium and copper was characterized in the mine tailings and surrounding soils (arable and pasture lands) of an old Spanish Pb-Zn mine. Sixty soil samples were analyzed, determining the total metal concentration by acid digestion and the chemical fractionation of Pb and Zn by the modified BCR sequential extraction method. Samples belonging to mine waste areas showed the highest values, with mean concentrations of 28,453.50 mg kg(-1) for Pb, 7000.44 mg kg(-1) for Zn, 20.57 mg kg(-1) for Cd and 308.48 mg kg(-1) for Cu. High concentrations of Pb, Zn and Cd were found in many of the samples taken from surrounding arable and pasture lands, indicating a certain extent of spreading of heavy metal pollution. Acidic drainage and wind transport of dust were proposed as the main effects causing the dispersion of pollution. Sequential extraction showed that most of the Pb was associated with non-residual fractions, mainly in reducible form, in all the collected samples. Zn appeared mainly associated with the acid-extractable form in mine tailing samples, while the residual form was the predominant one in samples belonging to surrounding areas. Comparison of our results with several criteria reported in the literature for risk assessment in soils polluted by heavy metals showed the need to treat the mine tailings dumped in the mine area.  相似文献   

16.
In the relatively pristine ecosystem in Kejimkujik Park, Nova Scotia, methylmercury (MeHg) concentrations in loons, Gavia immer, are among the highest recorded anywhere in the world. This study investigated the influence of bedrock lithology on MeHg concentrations in wetlands. Twenty-five different wetland field sites were sampled over four different bedrock lithologies; Kejimkujik monzogranite, black sulfidic slate, gray slate, and greywacke. Soil samples were analyzed for ethylmercury (EtHg), MeHg, total Hg, acid-volatile sulfides (AVS), organic matter, and water content as well as the biological parameters, mercury methyltransferase (HgMT) activity, sulfate reduction rates, fatty acid methyl ester (FAME) composition, and acidity. Methylmercury concentrations in the wetlands were highly dependent (P < 0.08) on lithology with no significant difference between bogs, fens, and swamps. Methylmercury concentrations in wetland soils developed on Kejimkujik monzogranite averaged 900 ng kg(-1) compared with only 300 ng kg(-1) in wetland soils developed on black sulfidic slate. Fatty acid methyl ester composition was also lithologically dependent (P < 0.001) with biomarkers for Desulfobulbus spp. discriminating between sites containing high and low MeHg concentrations. Levels of MeHg in wetlands were predicted mainly (41% of the sum of squares) by HgMT activity that differed (P < 0.009) between wetlands, with activity in bogs almost three times that present in swamps. Wetland MeHg concentrations are highly dependent on the lithology on which they have developed for largely biological reasons.  相似文献   

17.
王水消解-冷原子荧光法测定土壤中的微量汞   总被引:2,自引:0,他引:2  
建立了一种用王水水浴消解土壤样品一冷原子荧光测定土壤中的微量汞的分析方法。在优化实验条件下,方法的检出限为0.010 2ug/L;土壤中汞的回收率为95%-109%;测定下限为0.01ug/g。该方法具有操作简便、快速、准确、灵敏度高、重复性好等优点。  相似文献   

18.
This study presents the results of a laboratory investigation conducted to evaluate the efficiency of coal fly ash to control the formation of acid mine drainage (AMD) from mine waste. Site-specific materials, coal fly ash from Atikokan Thermal Generating Station and mine tailings from Musselwhite mine, were mixed at different proportions for the investigation of the drainage chemistry and the optimal mix using static testing (acid–base accounting) and kinetic (column) testing. The acid–base accounting (ABA) results indicated that the fly ash possessed strong alkaline (neutralization) potential (NP) and could be used in the management of reactive mine tailings, thus ensuring prevention of AMD in the long-term. Column tests conducted in the laboratory to further investigate long-term performance of fly ash in the neutralization and prevention of acid mine drainage from tailings similarly showed that mixing fly ash with mine tailings reduces dissolution of many heavy metals from tailings by providing alkalinity to the system. It was found that a fly ash to tailings mass ratio equal to or greater than 15% can effectively prevent AMD generation from Musselwhite mine tailings in the co-placement approach.  相似文献   

19.
Phytostabilization may limit the leakage of metals and As from submersed mine tailings, thus treatment of acid mine drainage with lime could be reduced. Tall cottongrass (Eriophorum angustifolium Honckeny) and white cottongrass (E. scheuchzeri Hoppe) were planted in pots with unlimed (pH 5.0) and limed (pH 10.9) tailings (containing sulfides) amended with sewage sludge (SS) or a bioashsewage sludge mixture (ASM). Effects of the amendments on plant growth and plant element uptake were studied. Also, effects of plant growth on elements (Cd, Cu, Pb, Zn, and As), pH, electrical conductivity (EC), and concentrations of SO4(2-), in the drainage water as well as dissolved oxygen in tailings, were measured. Both plant species grew better and the shoot element concentrations of white cottongrass were lower in SS than in ASM. Metal concentrations were lowest in drainage water from limed tailings, and plant establishment had little effect on metal release, except for an increase in Zn levels, even though SO4(2-) levels were increased. In unlimed tailings, plant growth increased SO4(2-) levels slightly; however, pH was increased and metal concentrations were low. Thus, metals were stabilized by plant uptake and high pH. Amendments or plants did not affect As levels in the drainage water from unlimed tailings. Thus, to reduce the use of lime for stabilizing metals, phytostabilization with tall cottongrass and white cottongrass on tailings is a sound possibility.  相似文献   

20.
Selenium (Se) associated with reclaimed uranium (U) mine lands may result in increased food chain transfer and water contamination. To assess post-reclamation bioavailability of Se at a U mine site in southeastern Wyoming, we studied soil Se distribution, dissolution, speciation, and sorption characteristics and plant Se accumulation. Phosphate-extractable soil Se exceeded the critical limit of 0.5 mg/kg in all the samples, whereas total soil Se ranged from a low (0.6 mg/kg) to an extremely high (26 mg/kg) value. Selenite was the dominant species in phosphate and ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extracts, whereas selenate was the major Se species in hot water extracts. Extractable soil Se concentrations were in the order of KH2PO4 > AB-DTPA > hot water > saturated paste. The soils were undersaturated with respect to various Se solid phases, albeit with high levels of extractable Se surpassing the critical limit. Calcium and Mg minerals were the potential primary solids controlling Se dissolution, with dissolved organic carbon in the equilibrium solutions resulting in enhanced Se availability. Adsorption was a significant (r2 = 0.76-0.99 at P < 0.05) mechanism governing Se availability and was best described by the initial mass isotherm model, which predicted a maximum reserve Se pool corresponding to 87% of the phosphate-extractable Se concentrations. Grasses, forbs, and shrubs accumulated 11 to 1800 mg Se/kg dry weight. While elevated levels of bioavailable Se may be potentially toxic, the plants accumulating high Se may be used for phytoremediation, or the palatable forage species may be used as animal feed supplements in Se-deficient areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号