首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
River flooding impacts human life and infrastructure, yet provides habitat and ecosystem services. Traditional flood control (e.g., levees, dams) reduces habitat and ecosystem services, and exacerbates flooding elsewhere. Floodplain restoration (i.e., bankfull floodplain reconnection and Stage 0) can also provide flood management, but has not been sufficiently evaluated for small frequent storms. We used 1D unsteady Hydrologic Engineering Center's River Analysis System to simulate small storms in a 5 km-long, second-order generic stream from the Chesapeake Bay watershed, and varied % channel restored (starting at the upstream end), restoration location, restoration bank height (distinguishes bankfull from Stage 0 restoration), and floodplain width/Manning's n. Stream restoration decreased (attenuated) peak flow up to 37% and increased floodplain exchange by up to 46%. Floodplain width and % channel restored had the largest impact on flood attenuation. The incremental effects of new restoration projects on flood attenuation were greatest when little prior restoration had occurred. By contrast, incremental effects on floodplain exchange were greatest in the presence of substantial prior restoration, setting up a tradeoff. A similar tradeoff was revealed between attenuation and exchange for project location, but not bank height or floodplain width. In particular, attenuation and exchange were always greater for Stage 0 than for bankfull floodplain restoration. Stage 0 thus may counteract human impacts such as urbanization.  相似文献   

2.
Evaluating stream restoration projects   总被引:2,自引:3,他引:2  
River and stream restoration projects are increasingly numerous but rarely subjected to systematic postproject evaluation. Without conducting such evaluation and widely disseminating the results, lessons will not be learned from successes and failures, and the field of river restoration cannot advance. Postproject evaluation must be incorporated into the initial design of each project, with the choice of evaluation technique based directly upon the specific project goals against which performance will be evaluated. We emphasize measurement of geomorphic characteristics, as these constitute the physical framework supporting riparian and aquatic ecosystems. Techniques for evaluating other components are briefly discussed, especially as they relate to geomorphic variables. Where possible, geomorphic, hydrologic, and ecological variables should be measured along the same transects. In general, postproject monitoring should continue for at least a decade, with surveys conducted after each flood above a predetermined threshold. Project design should be preceded by a historical study documenting former channel conditions to provide insights into the processes suggest earlier, potentially stable channel configurations as possible design models.  相似文献   

3.
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection.  相似文献   

4.
Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.  相似文献   

5.
ABSTRACT: This study investigates the use of a two‐dimensional hydrodynamic model (River2D) for an assessment of the effects of instream large woody debris and rock groyne habitat structures. The bathymetry of a study reach (a side channel of the Chilliwack River located in southwestern British Columbia) was surveyed after the installation of 11 instream restoration structures. A digital elevation model was developed and used with a hydrodynamic model to predict local velocity, depth, scour, and habitat characteristics. The channel was resurveyed after the fall high‐flow season during which a bankfull event occurred. Pre‐flood and post‐flood bathymetry pool distributions were compared. Measured scour was compared to predicted shear and pre‐flood and post‐flood fish habitat indices for coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) were compared. Two‐dimensional flow model velocity and depth predictions compare favorably to measured field values with mean standard errors of 24 percent and 6 percent, respectively, while areas of predicted high shear coincide with the newly formed pool locations. At high flows, the fish habitat index used (weighted usable area) increased by 150 percent to 210 percent. The application of the hydrodynamic model indicated a net habitat benefit from the restoration activities and provides a means of assessing and optimizing planned works.  相似文献   

6.
Construction of six large dams and reservoirs on the Missouri River over the last 50–75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood (Populus deltoides). We quantified changes in land cover from 1892–1950s and the 1950s–2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892–1950s and 1950s–2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s–2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25–50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25–50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.  相似文献   

7.
Scientists have long assumed that the physical structure and condition of stream and river channels have pervasive effects on biological communities and processes, but specific tests are few. To investigate the influence of the stream-reach geomorphic state on in-stream habitat and aquatic macroinvertebrate communities, we compared measures of habitat conditions and macroinvertebrate community composition between stable and unstable stream reaches in a paired-study design. We also explored potential associations between these ecological measures and individual geomorphic characteristics and channel adjustment processes (degradation, aggradation, overwidening, and change in planform). We found that habitat quality and heterogeneity were closely tied to stream stability, with geomorphically stable reaches supporting better habitat than unstable reaches. Geomorphic and habitat assessment scores were highly correlated (r = 0.624, P < 0.006, n = 18). Stable reaches did not support significantly greater macroinvertebrate densities than unstable reaches (t = −0.415, P > 0.689, df = 8). However, the percent of the macroinvertebrate community in the Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was significantly correlated with the overall habitat assessment scores as well as with individual measures of geomorphic condition and habitat quality. While there is a clear need for more work in classifying and quantifying the responses of aquatic and aquatic-dependent biota to various geomorphic states and processes, this study provides solid preliminary evidence that macroinvertebrate communities are affected by the geomorphic condition of the stream reaches they inhabit and that geomorphic assessment approaches can be used as a tool for evaluating ecological integrity.  相似文献   

8.
Kline, Michael and Barry Cahoon, 2010. Protecting River Corridors in Vermont. Journal of the American Water Resources Association (JAWRA) 46(2):227-236. DOI: 10.1111/j.1752-1688.2010.00417.x Abstract: The Vermont Agency of Natural Resources’ current strategy for restoring aquatic habitat, water quality, and riparian ecosystem services is the protection of fluvial geomorphic-based river corridors and associated wetland and floodplain attributes and functions. Vermont has assessed over 1,350 miles of stream channels to determine how natural processes have been modified by channel management activities, corridor encroachments, and land use/land cover changes. Nearly three quarters of Vermont field-assessed reaches are incised limiting access to floodplains and thus reducing important ecosystem services such as flood and erosion hazard mitigation, sediment storage, and nutrient uptake. River corridor planning is conducted with geomorphic data to identify opportunities and constraints to mitigating the effects of physical stressors. Corridors are sized based on the meander belt width and assigned a sensitivity rating based on the likelihood of channel adjustment due to stressors. The approach adopted by Vermont is fundamentally based on restoring fluvial processes associated with dynamic equilibrium, and associated habitat features. Managing toward fluvial equilibrium is taking hold across Vermont through adoption of municipal fluvial erosion hazard zoning and purchase of river corridor easements, or local channel and floodplain management rights. These tools signify a shift away from primarily active management approaches of varying success that largely worked against natural river form and process, to a current community-based, primarily passive approach to accommodate floodplain reestablishment through fluvial processes.  相似文献   

9.
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil–water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30–40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.  相似文献   

10.
Riparian forests attenuate solar radiation, thereby mediating an important component of the thermal budget of streams. Here, we investigate the relationship between riparian degradation, stream temperature, and channel width in the Chehalis River Basin, Washington State. We used lidar data to measure canopy opening angle, the angle formed between the channel center and trees on both banks; we assumed historical tree heights and calculated the change in canopy angle relative to historical conditions. We then developed an empirical relationship between canopy angle and water temperature using existing data, and simulated temperatures between 2002 and 2080 by combining a tree growth model with climate change scenarios from the NorWeST regional prediction. The greatest change between historical and current conditions (~7°C) occurred in developed portions of the river network, with the highest values of change predicted at channel widths less than ~40 m. Tree growth lessened climate change increases in maximum temperature and the length of river exceeding biologically critical thresholds by ~50%–60%. Moreover, the maximum temperature of channels with bankfull widths less than ~50 m remained similar to current conditions, despite climate change increases. Our findings are consistent with a possible role for the riparian landscape in explaining the low sensitivity of stream temperatures to air temperatures observed in some small mountain streams.  相似文献   

11.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

12.
Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003–2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.  相似文献   

13.
This paper recounts our predictions of channel evolution of the Black Vermillion River (BVR) and sediment yields associated with the evolutionary sequence. Channel design parameters allowed for the prediction of stable channel form and coincident sediment yields. Measured erosion rates and basin‐specific bank erosion curves aided in prediction of the stream channel succession time frame. This understanding is critical in determining how and when to mitigate a myriad of instability consequences. The BVR drains approximately 1,062 km2 in the glaciated region of Northeast Kansas. Once tallgrass prairie, the basin has been modified extensively for agricultural production. As such, channelization has shortened the river by nearly 26 km from pre‐European dimensions; shortening combined with the construction of numerous flow‐through structures have produced dramatic impacts on discharge and sediment dynamics. Nine stream reaches were established within three main tributaries of the BVR in 2007. Reaches averaged 490 m in length, were surveyed, and assessed for channel stability, while resurveys were conducted annually through 2010 to monitor change. This work illustrates the association of current stream state, in‐channel sediment contributions, and prediction of future erosion rates based on stream evolution informed by multiple models. Our findings suggest greater and more rapid sedimentation of a federal reservoir than has been predicted using standard sediment prediction methods.  相似文献   

14.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

15.
Stream habitat assessments are conducted to evaluate biological potential, determine anthropogenic impacts, and guide restoration projects. Utilizing these procedures, managers must first select a representative stream reach, which is typically selected based on several criteria. To develop a consistent and unbiased procedure for choosing sampling locations, the Illinois Department of Natural Resources and the Illinois Natural History Survey have proposed a technique by which watersheds are divided into homogeneous stream segments called valley segments. Valley segments are determined by GIS parameters including surficial geology, predicted flow, slope, and drainage area. To date, no research has been conducted to determine if the stream habitat within a valley segment is homogeneous and if different valley segments have varying habitat variables. Two abutting valley segments were randomly selected within 13 streams in the Embarras River watershed, located in east-central Illinois. One hundred meter reaches were randomly selected within each valley segment, and a transect method was used to quantify habitat characteristics of the stream channel. Habitat variables for each stream were combined through a principal components analysis (PCA) to measure environmental variation between abutting valley segments. A multivariate analysis of variance (MANOVA) was performed on PCA axes 1–3. The majority of abutting valley segments were significantly different from each other indicating that habitat variability within each valley segment was less than variability between valley segments (5.37 ≤ F ≤ 245.13; P ≤ 0.002). This comparison supports the use of the valley segment model as an effective management tool for identifying representative sampling locations and extrapolating reach-specific information.  相似文献   

16.
A federal, state, and private partnership leveraged resources and employed a long‐term, systematic approach to improve aquatic habitat degraded by decades of intensive forest management in Finney Creek, a tributary to the Skagit River of Northwest Washington State. After more than a decade of work to reduce sediment sources and the risk of landslides within the watershed, log jam installation commenced in 1999 and progressed downstream through 2010. Log jam design was adapted as experience was gained. A total of 181 log jams, including 60 floating log ballasted jams, were constructed along 12 km of channel. The goal was to alter hydraulic processes that affect aquatic habitat formation along 39 km of stream with emphasis on 18.5 km of lower Finney Creek. Aquatic habitat surveys over a five‐year period show an increase in the area of large pools and an accompanying increase in residual and maximum pool depth in the lower river reach. Channel cross sections show a generally deeper channel at the log jams, better channel definition in the gravel deposits at the head of the log jams, and improved riffle and thalweg development below the log jams. Stream temperature in the upper river decreased by 1.0°F in the first three years, and 1.1°F in the lowest treated reach over nine years. There is a trend of less stream heating over the restoration time period. Photo points show that riparian vegetation is recolonizing gravel bars.  相似文献   

17.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

18.
Geomorphologically appropriate rehabilitation measures were proposed to enhance the in-stream environment of the lowland River Idle, north Nottinghamshire, UK. However, the River Idle has multi-functional management requirements including those of flood defence so environmental enhancement must be pursued without significantly increasing the flood risk. Hydraulic testing of rehabilitation proposals is complicated because of the stringent assumptions about flow and morphology in ‘traditional’ hydraulic models. While new generation two- and three-dimension hydraulic models may overcome some of these problems, they are extremely data intensive, require advanced modelling capabilities and are, therefore, very expensive to apply. Also, they do not yet predict morphology-flow interactions adequately. As an alternative, several simple hydraulic models were applied to test the rehabilitation proposals, based on a fitness-for-purpose criterion.BENDFLOW was applied to fine tune the optimal siting of measures and to estimate the additional near-bank scour generated by proposed bend re-profiling. HMODEL2 and the FCFA method were used to test the impact on local channel conveyance capacities and HECRAS was applied to simulate the impact of the proposals on regional flood defence. Indicative results from the testing suggested a maximum increase in near-bank scour of 0·15 m in re-profiled bends, a loss of approximately 10% in flood conveyance locally due to deflector installation or reed and tree planting, and a 0·12 m increase in flood stage within the reach for a 15 year flood. The modelling results were acceptable to the management authority as an indication of an acceptable compromise between flood defence and conservation interests, and construction of the measures followed in 1996. It is clearly that it will require the results of post-project monitoring to indicate whether compromises made to the rehabilitation initiatives in order to satisfy flood defence requirements have unduly reduced their environmental enhancement potential but, for assessing the proposed methods, the models are recommended for use other lowland river environments.  相似文献   

19.
Geomorphic change from extreme events in large managed rivers has implications for river management. A steady‐state, quasi‐three‐dimensional hydrodynamic model was applied to a 29‐km reach of the Missouri River using 2011 flood data. Model results for an extreme flow (500‐year recurrence interval [RI]) and an elevated managed flow (75‐year RI) were used to assess sediment mobility through examination of the spatial distribution of boundary or bed shear stress (τb) and longitudinal patterns of average τb, velocity, and kurtosis of τb. Kurtosis of τb was used as an indicator of planform channel complexity and can be applied to other river systems. From differences in longitudinal patterns of sediment mobility for the two flows we can infer: (1) under extreme flow, the channel behaves as a single‐thread channel controlled primarily by flow, which enhances the meander pattern; (2) under elevated managed flows, the channel behaves as multithread channel controlled by the interaction of flow with bed and channel topography, resulting in a more complex channel; and (3) for both flows, the model reach lacks a consistent pattern of deposition or erosion, which indicates migration of areas of erosion and deposition within the reach. Despite caveats and limitations, the analysis provides useful information about geomorphic change under extreme flow and potential implications for river management. Although a 500‐year RI is rare, extreme hydrologic events such as this are predicted to increase in frequency.  相似文献   

20.
Increased water-dependent development and utilization have led to significant environmental and hydrological degradation of the Tarim River in western China and its dependent ecosystems. Between the 1950s and 1970s, 350 km of the lower reaches were drained and between 1960 and 1980 the water-table fell from between −2 and −3 m to between −8 and −10 m. Subsequently, riparian ecosystems were seriously degraded. In 2000, the Chinese government launched a program to restore the lower reaches of the river. Four environmental flows of 1034×106 m3 were released from 2000 to 2002. This paper interprets and discusses the ecological significance of changes following the releases and identifies the relationship between water-table dynamics and vegetation responses. Short-term objectives for river restoration are proposed with possible monitoring parameters suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号