首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

2.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

3.
Andrews, Danielle M., Christopher D. Barton, Randall K. Kolka, Charles C. Rhoades, and Adam J. Dattilo, 2011. Soil and Water Characteristics in Restored Canebrake and Forest Riparian Zones. Journal of the American Water Resources Association (JAWRA) 47(4):772‐784. DOI: 10.1111/j.1752‐1688.2011.00555.x Abstract: The degradation of streams has been widespread in the United States. In Kentucky, for instance, almost all of its large streams have been impounded or channelized. A restoration project was initiated in a channelized section of Wilson Creek (Nelson Co., Kentucky) to return its predisturbance meandering configuration. A goal of the project was to restore the native riparian corridor with giant cane and bottomland forest species. The objective of this study was to evaluate the use of giant cane in riparian restoration and to compare water quality and soil attributes between restored cane and forested communities. Comparison of data to replicated sites of similar size in undisturbed upstream areas (control) was also examined to evaluate restoration success. Vegetation establishment was initially hindered by frequent flooding in 2004, but mean survival was good after two growing seasons with rates of 80 and 61% for forest and cane plots, respectively. Results showed an improvement in stream water quality due to restoration activities. Significant differences between the cane and forested plots in shallow groundwater dissolved oxygen, NO3?‐N, NH4+‐N, and Mn concentrations suggest that soil redox conditions were not similar between the two vegetation types. Retention and transformation of carbon (C) and nitrogen (N) within the restored riparian system also differed by vegetation treatment; however, both communities appeared to be advancing toward conditions exhibited in the control section of Wilson Creek.  相似文献   

4.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

5.
A study of the impact of two flood control reservoirs and pollution influx was conducted on two streams within the Sandy Creek Watershed, Mercer County, Pennsylvania, USA. Fecal coliforms were significantly reduced in the outflows without affecting water chemistry, thereby improving the overall water quality. The size and composition of the aquatic communities as well as stream metabolism varied seasonably among the different sampling stations. Pollution influx primarily from communities and agricultural drainage had a greater impact on the stream ecosystem than did impounding of the streams. Natural wetlands and riparian vegetation were important factors in reducing the pollution load in these streams. The reestablishment and maintenance of riparian vegetation should therefore be an integral part of the land-use plan for watersheds in order to improve water quality and wildlife habitats. In the future, the maintenance of riparian vegetation should be given prime consideration in the development of watershed projects.  相似文献   

6.
We assessed the relationship between riparian management and stream quality along five southeastern Minnesota streams in 1995 and 1996. Specifically, we examined the effect of rotationally and continuously grazed pastures and different types of riparian buffer strips on water chemistry, physical habitat, benthic macroinvertebrates, and fish as indicators of stream quality. We collected data at 17 sites under different combinations of grazing and riparian management, using a longitudinal design on three streams and a paired watershed design on two others. Continuous and rotational grazing were compared along one longitudinal study stream and at the paired watershed. Riparian buffer management, fenced trees (wood buffer), fenced grass, and unfenced rotationally grazed areas were the focus along the two remaining longitudinal streams. Principal components analysis (PCA) of water chemistry, physical habitat, and biotic data indicated a local management effect. The ordinations separated continuous grazing from sites with rotational grazing and sites with wood buffers from those with grass buffers or rotationally grazed areas. Fecal coliform and turbidity were consistently higher at continuously grazed than rotationally grazed sites. Percent fines in the streambed were significantly higher at sites with wood buffers than grass and rotationally grazed areas, and canopy cover was similar at sites with wood and grass buffers. Benthic macroinvertebrate metrics were significant but were not consistent across grazing and riparian buffer management types. Fish density and abundance were related to riparian buffer type, rather than grazing practices. Our study has potentially important implications for stream restoration programs in the midwestern United States. Our comparisons suggest further consideration and study of a combination of grass and wood riparian buffer strips as midwestern stream management options, rather than universally installing wood buffers in every instance. RID=" ID=" The Unit is jointly sponsored by the US Geological Survey, Biological Resources Division; the Minnesota Department of Natural Resources; the University of Minnesota; and the Wildlife Management Institute.  相似文献   

7.
Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners’ water quality concerns, and also positively influences landowners’ attitudes of stream importance—a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.  相似文献   

8.
Riparian areas of large streams provide important habitat to many species and control many instream processes — but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian‐associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge‐to‐area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.  相似文献   

9.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

10.
Human alterations to the Iowa landscape, such as elimination of native vegetation for row crop agriculture and grazing, channelization of streams, and tile and ditch drainage, have led to deeply incised channels with accelerated streambank erosion. The magnitude of streambank erosion and soil loss were compared along Bear Creek in central Iowa. The subreaches are bordered by differing land uses, including reestablished riparian forest buffers, row crop fields, and continuously grazed riparian pastures. Erosion pins were measured from June 1998 to July 2002 to estimate the magnitude of streambank erosion. Total streambank soil loss was estimated by using magnitude of bank erosion, soil bulk density, and severely eroded bank area. Significant seasonal and yearly differences in magnitude of bank erosion and total soil loss were partially attributed to differences in precipitation and associated discharges. Riparian forest buffers had significantly lower magnitude of streambank erosion and total soil loss than the other two riparian land uses. Establishment of riparian forest buffers along all of the nonbuffered subreaches would have reduced stream‐bank soil loss by an estimated 77 to 97 percent, significantly decreasing sediment in the stream, a major water quality problem in Iowa.  相似文献   

11.
Abstract: Cool summertime stream temperature is an important component of high quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network; yet, little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest spatial and temporal patterns in summer stream temperature for small streams of the Oregon Coast Range in forests managed for timber production. We also explore relationships between stream and riparian attributes and observed stream temperature conditions and patterns. Summer stream temperature, channel, and riparian data were collected on 36 headwater streams in 2002, 2003, and 2004. Mean stream temperatures were consistent among summers and generally warmed in a downstream direction. However, longitudinal trends in maximum temperatures were more variable. At the reach scale of 0.5‐1.7 km, maximum temperatures increased in 17 streams, decreased in seven streams and did not change in three reaches. At the subreach scale (0.1‐1.5 km), maximum temperatures increased in 28 subreaches, decreased in 14, and did not change in 12 subreaches. Models of increasing temperature in a downstream direction may oversimplify fine‐scale patterns in small streams. Stream and riparian attributes that correlated with observed temperature patterns included cover, channel substrate, channel gradient, instream wood jam volume, riparian stand density, and geology type. Longitudinal patterns of stream temperature are an important consideration for background characterization of water quality. Studies attempting to evaluate stream temperature response to timber harvest or other modifications should quantify variability in longitudinal patterns of stream temperature prior to logging.  相似文献   

12.
Riparian areas link aquatic and terrestrial habitats, supporting species-rich bird communities, which integrate both terrestrial and aquatic processes. For this reason, inclusion of riparian birds in stream bioassessment could add to the information currently provided by existing programs that monitor aquatic organisms. To assess if bird community metrics could indicate stream conditions, we sampled breeding birds in the riparian zone of 37 reaches in 5 streams draining watersheds representing a gradient of agricultural intensity in central Italy. As a more direct indicator of water quality, stream macroinvertebrates were also sampled for computation of the Italian Extended Biotic Index (IBE). An anthropogenic index was calculated within 1 km of sampled reaches based on satellite-derived land-use classifications. Predictive models of macroinvertebrate integrity based on land-use and avian metrics were compared using an information-theoretic approach (AIC). We also determined if stream quality related to the detection of riverine species. Apparent bird species diversity and richness peaked at intermediate levels of land-use modification, but increased with IBE values. Water quality did not relate to the detection of riverine species as a guild, but two species, the dipper Cinclus cinclus and the grey wagtail Motacilla cinerea, were only observed in reaches with the highest IBE values. Small-bodied insectivorous birds and arboreal species were detected more often in reaches with better water quality and in less modified landscapes. In contrast, larger and granivorous species were more common in disturbed reaches. According to the information-theoretic approach, the best model for predicting water quality included the anthropogenic index, bird species diversity, and an index summarizing the trophic structure of the bird community. We conclude that, in combination with landscape-level information, the diversity and trophic structure of riparian bird communities could serve as a rapid indicator of stream-dwelling macroinvertebrates and, therefore, degradation of in-stream biotic integrity.  相似文献   

13.
Riparian buffer zone management is an area of increasing relevance as human modification of the landscape continues unabated. Land and water resource managers are continually challenged to maintain stream ecosystem integrity and water quality in the context of rapidly changing land use, which often offsets management gains. Approaches are needed not only to map vegetation cover in riparian zones, but also to monitor the changes taking place, target restoration activities, and assess the success of previous management actions. To date, these objectives have been difficult to meet using traditional techniques based on aerial photos and field visits, particularly over large areas. Recent advances in remote sensing have the potential to substantially aid buffer zone management. Very high resolution imagery is now available that allows detailed mapping and monitoring of buffer zone vegetation and provides a basis for consistent assessments using moderately high resolution remote sensing (e.g., Landsat). Laser‐based remote sensing is another advance that permits even more detailed information on buffer zone properties, such as refined topographic derivatives and multidimensional vegetation structure. These sources of image data and map information are reviewed in this paper, examples of their application to riparian buffer mapping and stream health assessment are provided, and future prospects for improved buffer monitoring are discussed.  相似文献   

14.
The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.  相似文献   

15.
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific.  相似文献   

16.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

17.
Abstract: Stream and riparian managers must effectively allocate limited financial and personnel resources to monitor and manage riparian ecosystems. They need to use management strategies and monitoring methods that are compatible with their objectives and the response potential of each stream reach. Our objective is to help others set realistic management objectives by comparing results from different methods used to document riparian recovery across a diversity of stream types. The Bureau of Land Management Elko Field Office, Nevada, used stream survey, riparian proper functioning condition (PFC) assessment, repeat photographic analysis, and stream and ecological classification to study 10 streams within the Marys River watershed of northeast Nevada during all or parts of 20 years. Most riparian areas improved significantly from 1979 to 1992‐1993 and then additionally by 1997‐2000. Improvements were observed in riparian and habitat condition indices, bank cover, and stability, pool quality, bank angle, and depth of undercut bank. Interpretation of repeat photography generally confirmed results from stream survey and should be part of long‐term riparian monitoring. More attributes of Rosgen stream types C and E improved than of types B and F. A and Gc streams did not show significant improvement. Alluvial draws and alluvial valleys improved in more ways than V‐erosional canyons and especially V‐depositional canyons. Stream survey data could not be substituted for riparian PFC assessment. Riparian PFC assessments help interpret other data.  相似文献   

18.
19.
Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.  相似文献   

20.
Vidon, Philippe, Craig Allan, Douglas Burns, Tim P. Duval, Noel Gurwick, Shreeram Inamdar, Richard Lowrance, Judy Okay, Durelle Scott, and Steve Sebestyen, 2010. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. Journal of the American Water Resources Association (JAWRA) 46(2):278-298. DOI: 10.1111/j.1752-1688.2010.00420.x Abstract: Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as “hot spots and moments” of retention, degradation, or production. Nevertheless, studies investigating the importance of hot phenomena (spots and moments) in riparian zones have thus far largely focused on nitrogen (N) despite compelling evidence that a variety of elements, chemicals, and particulate contaminant cycles are subject to the influence of both biogeochemical and transport hot spots and moments. In addition to N, this review summarizes current knowledge for phosphorus, organic matter, pesticides, and mercury across riparian zones, identifies variables controlling the occurrence and magnitude of hot phenomena in riparian zones for these contaminants, and discusses the implications for riparian zone management of recognizing the importance of hot phenomena in annual solute budgets at the watershed scale. Examples are presented to show that biogeochemical process-driven hot spots and moments occur along the stream/riparian zone/upland interface for a wide variety of constituents. A basic understanding of the possible co-occurrence of hot spots and moments for a variety of contaminants in riparian systems will increase our understanding of the influence of riparian zones on water quality and guide management strategies to enhance nutrient or pollutant removal at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号