首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

2.
ABSTRACT: This paper illustrates a method of using a hydrologic/water quality model to analyze alternative management practices and recommend best management practices (BMPs) to reduce nitrate-nitrogen (NO3--N) leaching losses. The study area for this research is Tipton, an agriculturally intensive area in southwest Oklahoma. We used Erosion Productivity Impact Calculator (EPIC), a field-scale hydrologic/water quality model, to analyze alternative agricultural management practices. The model was first validated using observed data from a cotton demonstration experiment conducted in the Tipton area. Following that, EPIC was used to simulate fertilizer response curves for cotton and wheat crops under irrigated and dryland conditions. From the fertilizer response functions (N-uptake and N-leaching), we established an optimum fertilizer application rate for each crop. Individual crop performances were then simulated at optimum fertilizer application rates and crop rotations for the Tipton area, which were selected based on three criteria: (a) minimum amount of NO3--N leached, (b) minimum concentration of NO3--N leached, and (c) maximum utilization of NO3--M. Further we illustrate that by considering residual N from alfalfa as a credit to the following crop and crediting NO3--N present in the irrigation water, it is possible to reduce further NO3--N loss without affecting crop yield.  相似文献   

3.
ABSTRACT: Based on alkalinity data for 596 lakes, 31 percent of Florida's 7300 lakes have < 100 μeq/l alkalinity and are sensitive to acid depostion. More than two-thirds of the lakes in 12 northern Florida counties fit this criterion. Increasing aluminum and decreasing nutrient and chlorophyll a concentrations were observed with decressing pH in a survery of 20 softwater lakes. Maximum measured aluminum values (100-150 μg/L) are below levels asociated with fish toxicity. Factor analysis showed that lake chemistry was related to three principal factors, representing three major processes: watershed weathering, acidification, and nutrient inputs. An acidification index defined as the difference between excess SO42- and excess (Ca2++Mg2+) accounted for 74 percent of the variance in lake pH. Comparison of historical (late 1950a) and present data for pH, alkalinity, and excess SO42- indicated loss of alkalinity (>25 μeq/L) and increase in excess SO42- (16-34 μeq/L) in several softwater lakes.  相似文献   

4.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

5.
ABSTRACT: The Watershed Nutrient Transport and Transformation (NTT-Watershed) model is a physically based, energy-driven, multiple land use, distributed model that is capable of simulating water and nutrient transport in a watershed. The topographic features and subsurface properties of the watershed are refined into uniform, homogeneous square grids. The vertical discretization includes vegetation, overland flow, soil water redistribution and groundwater zones. The chemical submodel simulates the nitrogen dynamics in terrestrial and aquatic systems. Three chemical state variables are considered (NO3--, NH4+, and Org-N). The NTT-Watershed model was used to simulate the fate and transport of nitrogen in the Muddy Brook watershed in Connecticut. The model was shown to be capable of capturing the hydrologic and portions of the nitrogen dynamics in the watershed. Watershed planners could use this model in developing strategies of best management practices that could result in maximizing the reductions of nitrogen export from a watershed.  相似文献   

6.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

7.
ABSTRACT: The underwater light field of eight central New York lakes, which represent a wide range of trophic state, was characterized through paired measurements of Sechi disc transparency (SD, m) and diffuse light attenuation (Kd, m?1). A total of 90 paired measurements are included in the data base. Substantial variability in the Kd SD product with time within individual systems, and amongst systems, was observed, which indicates differences in the relative contributions of absorption and scattering to attenuation. More than 50 percent of the temporal variability in Kd was attributable to attendant variations in chlorophyll a (C, mg m?3) in only two of the lakes. Estimates of the adsorption (a, m?1) and scattering (b, m?1) coefficients based on paired Kd and SD measurements compared well with more precise determinations available for one of the lakes. Determinations of a and b for the eight lakes, from SD and Kd measurements, indicated great system-specificity and temporal variability in these characteristics. The temporal variability in relative contributions of a and b to Kd is consistent with covariation of different attenuating components and the lack of correlation between C and Kd in most of the study lakes.  相似文献   

8.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

9.
ABSTRACT: This paper presents the results of steady-state three-dimensional computer simulations to determine the hydrogeologic setting of formation water in the hydrocarbon producing formations of southwestern New York and northwestern Pennsylvania. Recharge areas for the regional ground water flow systems in the study area are the Valley Heads Moraine and Allegheny uplands; discharge areas are Lakes Erie and Ontario to the north and the northern margin of the Appalachian basin to the south. Simulated ground water flow in all model layers moves north from the ground water divide on the Valley Heads Moraine towards Lake Erie at a rate from 10?-6 to 10?-3 ft/day. South of the divide intermediate-scale and local-scale flow systems occur in the upper 4000 feet of the stratigraphic section and the directions of ground water flow diverge towards major rivers and other topographically low areas.  相似文献   

10.
ABSTRACT: Hydrologic responses to logging with skidders and responses to logging with a cable yarder are compared. After a 23-year calibration with an undisturbed control catchment, mixed stands of shortleaf pine (Pinus echinata Mill.) and hardwoods were clearfelled on two small catchments in the hilly Coastal Plain of north Mississippi and observed for five years. Runoff increased 370 mm (skidded) and 116 mm (yarded) during the first year with 1876 mm of rainfall, and 234 mm (skidded) and 228 mm (yarded) during the second year when 1388 mm of precipitation equaled the calibration mean. Sediment concentrations for the yarded catchment during the first two years averaged 641 and 1,629 mg L?1, respectively, and yields were 6,502 and 12,086 kg ha?1. Compared to calibration means of 74 mg L?1 and 142 kg ha?1, these extreme values can be attributed largely to transport of sediment stored in the channel and to erosion of subsurface flow paths, which was exacerbated by high flow volumes. During the first year, the concentration (231 mg L?1) and yield (2,827 kg ha?1) for the control catchment also exceeded the calibration means. However, concentrations (134 mg L?1) and yields (1,806 kg ha?1) for the skidded catchment were about 40 percent lower than for the control catchment during the first year, and were higher than those for the control only during the second year. Because deep percolation was limited and because rainfall was unusually high, increases in flows and sediment concentrations and yields probably approximate maximum responses to clearcut harvesting in the uplands of the southern Coastal Plain.  相似文献   

11.
ABSTRACT: Strategies for the precipitation and separation of the primary metal ions, Fe(II), Cu(II), Zn(II), Mn(II), and Cd(II) in acid waste waters such as those in tributaries of the upper Sacramento River in northern California, are discussed. The strategies exploit the: (1) differential oxygen and hydrogen peroxide oxidation and precipitation properties of the metal ions as a function of pH, (2) the addition of ions, such as Mg2 + and Cl-, to reduce unfavorable coprecipitation, and (3) the facilitation of oxidation-reduction reactions between metal ions and the stabilization of particular oxidation states. This may be accomplished with specific complexing agents such as thiocyanate, SCN-, and thiourea (TU), S = C(NH2)2 in order to separate copper at low pH as Cu(I) using Fe(II) as a reducing agent.  相似文献   

12.
We investigated the effects of herbage removal on three subalpine meadow plant communities in the Rock Creek drainage of Sequoia National Park, California, USA. In the xericCarex exserta Mkze. (short-hair sedge) type, annual aboveground productivity averaged 19 g/m2 in control plots (clipped once after plant senescence in late September) over a five-year period. Annual aboveground productivity was enhanced about 30%–35% when plots in this community type were clipped more frequently (i.e., additional herbage removal in the early, mid, and late seasons) during each of four treatment years but was reduced by 13%–19% during a fifth (recovery) year in which all but late September clipping was suspended. In a moderately mesicEleocharis pauciflora (Lightf.) Link. (few-flowered spike rush)-Calamagrostis breweri Thurb. (short-hair grass) type, control plot productivity averaged 115 g/m2/yr and was reduced by 20–30% by the additional herbage removal. A more mesicDeschampsia caespitosa (L.) Beauv. (tufted hairgrass)-Carex rostrata Stokes, (beaked sedge) type had the greatest mean above-ground productivity (169 g/m2/yr) but also showed damage (i.e., decrease in productivity by 15%–20%) caused by the additional herbage removal. These data suggest that longterm, intensive herbage removal may be more detrimental to moderately mesic and mesic subalpine meadow community types than to xeric types.  相似文献   

13.
Lithology is one of many factors influencing the amount, grain size distribution, and location of fine sediment deposition on the bed of mountain stream channels. In the Oregon Coast Range, 18 pool-riffle stream reaches with similar slope and intact riparian area and relatively unaffected by logjams were surveyed for assessment of fine sediment deposition. Half of the streams were in watersheds underlain by relatively erodible sandstone. The other half were underlain by a more resistant basalt. Channel morphology, hydraulic variables, particle size, relative pool volume of fine sediment (V*), and wood characteristics were measured in the streams. A significantly higher amount of fine sediment was deposited in the sandstone channels than in the basalt channels, as indicated by V*. Grab samples of sediment from pools also were significantly finer grained in the sandstone channels. Geographic information systems (GIS) software was used to derive several variables that might correlate with fine sediment deposition. These variables were combined with those derived from field data to create multiple linear regression models to be used for further exploration of the type and relative influence of factors affecting fine sediment deposition. Lithology appeared to be significant in some of these models, but usually was not the primary driver. The results from these models indicate that V* at the reach scale is best explained by stream power per unit area and by the volume of wood perpendicular to the flow per channel area (R2 = 0.46). Findings show that V* is best explained using only watershed scale variables, including negative correlations with relief ratio and basin precipitation index, and positive correlations with maximum slope and circularity.  相似文献   

14.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

15.
Inter-seasonal studies on the trace metal load of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River were conducted between 2003 and 2004. The impact of anthropogenic activities especially industrial effluent, petroleum related wastes, gas flare and episodic oil spills on the ecosystem are remarkable. Trace metals analyzed included cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), vanadium (V) and zinc (Zn). Sediment particle size analysis revealed that they were characteristically psammitic and were predominantly of medium to fine grained sand (>73%), less of silt (<15%) and clay (<10%). These results correlated with low levels of trace elements such as Pb (0.03 ± 0.02 mg kg−1), Cr (0.22 ± 0.12 mg kg−1), Cd (0.05 ± 0.03 mg kg−1), Cu (0.04 ± 0.02 mg kg−1) and Mn (0.23 ± 0.22 mg kg−1) in the sediment samples. This observation is consistent with the scarcity of clayey materials known to be good scavengers for metallic and organic contaminants. Sediments indicated enhanced concentration of Fe, Ni and V, while other metal levels were relatively low. The concentrations of all the metals except Pb in surface water were within the permissible levels, suggesting that the petroleum contaminants had minimal effect on the state of pollution by trace metals in Iko River. Notably, the pollutant concentrations in the sediments were markedly higher than the corresponding concentrations in surface water and T. fuscatus tissues, and decreased with distance from point sources of pollution.  相似文献   

16.
ABSTRACT: Areas of low topographic relief have low water-table gradients and make the direction of movement of contaminants from land fills in the ground water difficult to predict from regional gradients alone. The landfill, nearby free-flowing ditches or canals, variations in hydraulic conductivity, and the influence of nearby pumping wells can all affect the direction of flow. In low-gradient areas the concepts of “upgradient” and “downgradient” are less useful in planning the location of monitoring wells than in areas of higher relief. Low-relief areas also may be affected by the discharge of mineralized water from deeper aquifers, naturally or through irrigation, which can mask geochemical surveys intended to detect landfill leachate. Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7×10?-4 to 5×10?-4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.  相似文献   

17.
Environmental implications of Biological spectrum vis-à-vis tree species diversity in two protected forests of Gandhamardan hill ranges of Eastern Ghats, India, are of great ecological significance in the perspective of climatic change. Biological spectrum includes phanerophytes (38.4?%), nanophanerophytes (11.4?%), chamaephytes (5.5?%), hemicryptophytes (2.4?%), geophytes (4.1?%), hydrophytes (0.7?%), therophytes (27.3?%), and lianas (10?%). The comparison with Raunkiaer??s normal spectrum depicts ??Phanero-Therophytic Phytoclimate??. The present study enlisted of a total of 10,775 trees belonging to 90 tree species within a 17.6?ha sampled area (441 plots). The Shannon?CWeiner index (H??) is 3.92 (Site-I) and 3.31 (Site-II) with Simpson??s value 1.0. This value indicates that the tropical moist deciduous forests are also species diverse systems. Mean stand density was 671?ha?1 in Site-I and 565?ha?1 in Site-II. Ascertaining the phytoclimate of Gandhamardan hill ranges vis-à-vis tree species diversity and comparing the area on a geographical scale would be helpful for conservation and management of the study area.  相似文献   

18.
Summary The ability of fly ash to remove Zn(II) from water by adsorption has been tested at different concentrations, temperatures and pH of the solution. It was found that low adsorbate concentration, small particle size of adsorbent and higher temperature favoured the removal of Zn(II) from aqueous solution. The Langmuir isotherm was used to represent the equilibrium data at different temperatures. The apparent heat of adsorption has been found to be 17.325 Kcal mol–1, which indicates the process to be endothermic. The uptake of Zn(II) is diffusion controlled and the mass transfer coefficient is 3.56 × 10–5 cm s –1.The maximum removal was noted at pH 7.5. Dr V.N. Singh is Professor and Head of the Department of Applied Chemistry, Dr A.K. and Prof. D.P. Singh are members of the Department of Mining Engineering; all are situated in the Institute of Technology at Banaras Hindu University.  相似文献   

19.
ABSTRACT: Twenty-six aspen (Populus tremuloides Michx.), 20 subalpine fir (Abies lasiocarps (Hook.) Nutt.), and 20 Engelmann spruce (Pices engelmanil (Parry) Engelm.) of various sizes were cut under water and suspended in permanent reserviors at a northern Utah site. The reservoirs were asealed so that all water loss was due to consumption by the trees. Sap velocities, as computed from heat pulse velocities, were related to conducting areas of the tree trunks. Computed transpiration volumes were then correlated with actual water losses from the reservoirs. Coefficients of determination (R2) of 0.87, 0.86, and 0.82 were obtained for the fir, aspen, and sprucs, respectively. Reservoir water loss for each species for each season was then used to adjust a plant activity index for computing transpiration within ASPCON, a model describing the hydrology of aspen to conifer succession. The plant activity index reflects the variation in the capability of a plant community to transpire water over the year. Assumptions and limitations of the heat pulse velocity technique are also outlined.  相似文献   

20.
The aim of this work was to investigate the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF-EMF) and mechanical vibration at infrasound frequency (MV at IS frequency or MV) on growth and development of Escherichia coli K-12, by using classical microbiological (counting colony forming units), isotopic, spectrophotometric and electronmicroscopic methods. The frequency-dependent effects of MV and ELF-EMF were shown that they could either stimulate or inhibit the growth and the division of microbes depending on the periods following exposure. However, the mechanism through which the MV and ELF-EMF effects affect the bacteria cell is not clear yet. It was suggested that the aqua medium could serve a target through which the biological effect of MV and ELF-EMF on microbes could be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz) of both MV and ELF-EMF on the bacterial growth, division and their motility in cases of exposure, the preliminary treated microbes-free medium and microbes containing medium were studied. Both MV and ELF-EMF effect on microbes have frequency and post-exposure period duration-dependent characters. The [ 3 H]-thymidine involving experiments shown that EMF at 4 Hz exposure has pronounced stimulation effect on cell proliferation while 4 Hz MV has inhibition effect. But at 8–10 Hz, the both EMF and MV have inhibitory effects on cell proliferation. It is suggested that 4 and 8 Hz EMF have different biological effects on microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号