首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This work provides the essential information and approaches for integration of carbon dioxide (CO2) capture units into power plants, particularly the supercritical type, so that energy utilization and CO2 emissions can be well managed in the subject power plants. An in-house model, developed at the University of Regina, Canada, was successfully used for simulating a 500 MW supercritical coal-fired power plant with a post-combustion CO2 capture unit. The simulations enabled sensitivity and parametric study of the net efficiency of the power plant, the coal consumption rate, and the amounts of CO2 captured and avoided. The parameters of interest include CO2 capture efficiency, type of coal, flue gas delivery scheme, type of amine used in the capture unit, and steam pressure supplied to the capture unit for solvent regeneration. The results show that the advancement of MEA-based CO2 capture units through uses of blended monoethanolamine–methyldiethanolamine (MEA–MDEA) and split flow configuration can potentially make the integration of power plant and CO2 capture unit less energy intensive. Despite the increase in energy penalty, it may be worth capturing CO2 at a higher efficiency to achieve greater CO2 emissions avoided. The flue gas delivery scheme and the steam pressure drawn from the power plant to the CO2 capture unit should be considered for process integration.  相似文献   

2.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

3.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

4.
When integrating a post-combustion CO2 capture process and CO2 compression into a steam power plant, the three interface quantities heat, electricity and cooling duty must be satisfied by the power plant, leading to a loss in net efficiency. The heat duty shows to be the largest contributor to the overall net efficiency penalty of the power plant. Additional energy penalty results from the cooling and electric power duty of the capture and compression units.In this work, the dependency of the energy penalty on the quantity and quality of the heat duty is analyzed and quantified for a state-of-the-art hard coal fired power plant. Furthermore, the energy penalty attributed to the additional cooling and power duty is quantified. As a result correlations are provided which enable to predict the impact of the heat, cooling and electricity duty of post-combustion CO2 capture processes on the net output of a steam power plant in a holistic approach.  相似文献   

5.
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%.  相似文献   

6.
The application of post-combustion capture (PCC) processes in coal fired power stations can result in large reductions of the CO2-emissions, but the consequential decrease in generation efficiency is an important draw-back. The leading PCC technology is based on chemical absorption processes as this technology is the one whose scale-up status is closest to full-scale capture in power plants. The energy performance of this process is analysed in this contribution. The analysis shows that the potential for improvement of the energy performance is quite large. It is demonstrated that further development of the capture technology and the power plant technology can lead to generation efficiencies for power plants with 90% CO2 capture which are equivalent to the current generation efficiencies without CO2 capture, i.e. 0.4 (HHV), leading to an additional resource consumption of 16%. These improvements are possible throughout a combined improvement for the capture process and power generation processes.  相似文献   

7.
In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO2 capture is presented. This process makes use of the CaO capability for CO2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO3 is calcined, the carbonator where the CO2 produced in the combustor is captured, the supercritical steam cycle and the CO2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO2 compression system.  相似文献   

8.
Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. Reductions in the cost of technologies as a result of learning-by-doing, R&D investments and other factors have been observed over many decades. This study uses historical experience curves as the basis for estimating future cost trends for four types of electric power plants equipped with CO2 capture systems: pulverized coal (PC) and natural gas combined cycle (NGCC) plants with post-combustion CO2 capture; coal-based integrated gasification combined cycle (IGCC) plants with pre-combustion capture; and coal-fired oxyfuel combustion for new PC plants. We first assess the rates of cost reductions achieved by other energy and environmental process technologies in the past. Then, by analogy with leading capture plant designs, we estimate future cost reductions that might be achieved by power plants employing CO2 capture. Effects of uncertainties in key parameters on projected cost reductions also are evaluated via sensitivity analysis.  相似文献   

9.
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts. While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns. This requires a holistic and system-wide environmental assessment rather than focusing on the greenhouse gases only. Life Cycle Assessment meets this criteria as it not only tracks energy and non-energy-related greenhouse gas releases but also tracks various other environmental releases, such as solid wastes, toxic substances and common air pollutants, as well as the consumption of other resources, such as water, minerals and land use. This paper presents the principles of the CO2 capture and storage LCA model developed at Imperial College and uses the pulverised coal post-combustion capture example to demonstrate the methodology in detail. At first, the LCA models developed for the coal combustion system and the chemical absorption CO2 capture system are presented together with examples of relevant model applications. Next, the two models are applied to a plant with post-combustion CO2 capture, in order to compare the life cycle environmental performance of systems with and without CO2 capture. The LCA results for the alternative post-combustion CO2 capture methods (including MEA, K+/PZ, and KS-1) have shown that, compared to plants without capture, the alternative CO2 capture methods can achieve approximately 80% reduction in global warming potential without a significant increase in other life cycle impact categories. The results have also shown that, of all the solvent options modelled, KS-1 performed the best in most impact categories.  相似文献   

10.
Absorption by chemical solvents combined with CO2 long-term storage appears to offer interesting and commercial applicable CO2 capture technology. However one of the main disadvantages is related to the large quantities of heat required to regenerate the amine solvent that means an important power plant efficiency penalty. Different studies have analyzed alternatives to reduce the heat duty on the reboiler and the thermal integration requirements on existing power cycles. In these studies integration principles have been well set up, but there is a lack of information about how to achieve an integrated design and the thermal balances of the modified cycle flowsheet. This paper proposes and provides details about a set of modifications of a supercritical steam cycle to overcome the energy requirements through energetic integration with the aim of reducing the efficiency and power output penalty associated with CO2 capture process. Modifications include a new designed low-pressure heater flowsheet to take advantage of the CO2 compression cooling for postcombustion systems and integration of amine reboiler into a steam cycle. It has been carried out several simulations in order to obtain power plant performance depending on sorbent regeneration requirements.  相似文献   

11.
Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H2) than conventional crude oils. The current H2 demand for oil sands operations is met mostly by steam reforming of natural gas (SMR). The future expansion of oil sands operations is likely to quadruple the demand of H2 for oil sand operations in the next decade.This paper presents modified process schemes that capture CO2 at minimum energy penalty in modern SMR plants. The approach is to simulate a base case H2 plant without CO2 capture and then look for the best operating conditions that minimize the energy penalty associated with CO2 capture while maximizing H2 production. The two CO2 capture schemes evaluated in this study include a membrane separation process and the monoethanolamine (MEA) absorption process. A low energy penalty is observed when there is lower CO2 production and higher steam production. The process simulation results show that the H2 plant with CO2 capture has to be operated at lower steam to carbon ratio (S/C), higher inlet temperature of the SMR and lower inlet temperatures for the water gas-shift (WGS) converters to attain lowest energy penalty. Also it is observed that both CO2 capture processes, the membrane process and the MEA absorption process, are comparable in terms of energy penalty and CO2 avoided when both are operated at conditions where lowest energy penalty exists.  相似文献   

12.
This study presents a comparison of different concepts for delivering combined heat and power (CHP) to a refinery in Norway. A reference case of producing high pressure steam from natural gas in boilers and electricity in a combined cycle power plant, is compared to a: (1) natural gas fueled CHP without any CO2 capture; (2) hydrogen fueled CHP with hydrogen produced from steam methane reforming (SMR); (3) hydrogen fueled CHP with hydrogen produced from autothermal reforming (ATR); and finally (4) natural gas fueled CHP with postcombustion CO2 removal. The options are compared on the basis of first law efficiency, emissions of CO2 and a simplified cash flow evaluation. Results show that in terms of efficiency the standard natural gas fueled CHP performs better than the reference case as well as the options with carbon capture. The low carbon options in turn offer lower emissions of greenhouse gases while maintaining the same efficiency as the reference case. The cash flow analysis shows that for any option, a certain mix of prices is required to produce a positive cash flow. As expected, the relationship between natural gas price and electricity price affects all options. Also the value of heat and CO2 emissions plays an important role.  相似文献   

13.
This study examines energetic and exergetic performances of display cases’ units used in market applications depending on different refrigerants. Besides CO2 emission potential of each refrigerant based on exergetic irreversibility obtained from analyses is calculated by the method of Total Equivalent Warming Impact (TEWI). In this study, 1 kW cooling capacity and vapor compression cooling cycle is taken as reference and refrigerants of R-22, R-134a, R-404A, and R-507 together with alternative refrigerant R-407C and R152a are examined separately. According to analyses, R-404A gas, used widely in market applications, has low performance with average COP 3.89 and average exergy efficiency 55.20%. R-152a gas has the best performance by the thermodynamics parameters including COP 4.49, exergy efficiency 63.79%, and 0.23 kW power consumption and emission parameter 14097.490 ton CO2/year. Although COP is used as a criterion to evaluate the systems, this study finally emphasizes the importance of exergy analysis and TEWI method which are important methods to determine irreversibility and emission potential of the systems.  相似文献   

14.
Emissions from electricity generation will have to be reduced to near-zero to meet targets for reducing overall greenhouse gas emissions. Variable renewable energy sources such as wind will help to achieve this goal but they will have to be used in conjunction with other flexible power plants with low-CO2 emissions. A process which would be well suited to this role would be coal gasification hydrogen production with CCS, underground buffer storage of hydrogen and independent gas turbine power generation. The gasification hydrogen production and CO2 capture and storage equipment could operate at full load and only the power plants would need to operate flexibly and at low load, which would result in substantial practical and economic advantages. This paper analyses the performances and costs of such plants in scenarios with various amounts of wind generation, based on data for power demand and wind energy variability in the UK. In a scenario with 35% wind generation, overall emissions of CO2 could be reduced by 98–99%. The cost of abating CO2 emissions from the non-wind residual generation using the technique proposed in this paper would be less than 40% of the cost of using coal-fired power plants with integrated CCS.  相似文献   

15.
This study aims to identify key factors affecting energy-induced CO2emission changes from 34 industries in Taiwan, in order to have an integrated understanding of the industrial environmental-economic-energy performance and to provide insights for relevant policy making in Taiwan. Grey relation analysis was used in this paper to analyse how energy-induced CO2emissions from 34 industries in Taiwan are affected by the factors: production, total energy consumption, coal, oil, gas and electricity uses. The methodology was modified by taking account of the evolutionary direction among relevant factors. Furthermore, tests of sensitivity and stability, which are seldom discussed in most grey relation analyses, were conducted to ensure the reliability of outcomes. We found that values ranging from 0·3 to 0·5 are appropriate, and the analytical results with value of 0·5 offer moderate distinguishing effects and good stability. Results indicate that industrial production has the closest relationship with aggregate CO2emission changes; electricity consumption the second in importance. It reveals that the economy in Taiwan relied heavily on CO2intensive industries, and that electricity consumption had become more important for economic growth. The relational order of fuels is electricity, coal, oil then gas, accordant with their CO2emission coefficients in Taiwan. The positive relational grade of aggregate production implies that the aggregate industrial CO2intensity tended to decline. The total energy consumption had a smaller and negative relational grade with CO2emissions, and implies an improvement on aggregate energy intensity, while the CO2emission coefficient increased. For industries with significant influence on CO2emissions, the total energy consumption had the largest relational grades. It is important to reduce the energy intensity of these industries. Nevertheless, it is also critical to decouple energy consumption and production to reduce the impacts of CO2mitigation on economic growth.  相似文献   

16.
This paper presents the results of system assessments that were conducted to compare conventional and advanced water–gas shift reactor sections. The latter are specifically tailored for Integrated Gasification Combined Cycles (IGCC) power plants with pre-combustion CO2 capture. The advanced shift reactor section comprises four staged reactors with distributed feeds of synthesis gas and quench water in between the reactors. Conventional shift reactor sections consist of two sequential reactors with intermediate cooling, where the entire synthesis gas stream passes both reactors.The advanced shift reactor section reduces the steam requirement of the water–gas shift reaction up to 70% in comparison with conventional configurations, at carbon dioxide capture ratios of approximately 85%. This reduction allows for lower electric efficiency penalties, thus higher net electric outputs for IGCC power plants with CO2 capture. For each case, the CO2 capture ratio was optimised for the lowest specific lost work per amount of captured CO2. Both the number of reactors and the total catalyst volume are higher for the advanced shift reactor sections, resulting in increased capital expenses. In case of four staged reactors, the additional expenses are expected to be outperformed by the increased revenues associated with the higher net electric output.  相似文献   

17.
Electricity and hydrogen can be used as energy carriers to reduce emissions of CO2 from small and mobile energy users. One of the most promising technologies for the production of electricity and hydrogen with low CO2 emissions is coal gasification with CO2 capture and storage. Performance and cost data are presented for plants which produce electricity and hydrogen alone and plants which co-produce both of these energy carriers. The co-production plants include plants which produce a fixed ratio of hydrogen to electricity and plants which are able to vary the ratio while continuing to operate the gasification and CO2 capture parts of the plant at full load. The paper also assesses the ability of these types of plants to satisfy the varying demands for hydrogen and electricity in future energy supply systems. The lowest cost option for the scenarios assessed in the paper is the use of flexible co-production plants with underground buffer storage of hydrogen.  相似文献   

18.
CO2 capture and storage from energy conversion systems is one option for reducing power plant CO2 emissions to the atmosphere and for limiting the impact of fossil-fuel use on climate change. Among existing technologies, chemical looping combustion (CLC), an oxy-fuel approach, appears to be one of the most promising techniques, providing straightforward CO2 capture with low energy requirements.This paper provides an evaluation of CLC technology from an economic and environmental perspective by comparing it with to a reference plant, a combined cycle power plant that includes no CO2 capture. Two exergy-based methods, the exergoeconomic and the exergoenvironmental analyses, are used to determine the economic and environmental impacts, respectively. The applied methods facilitate the iterative optimization of energy conversion systems and lead towards the improvement of the effectiveness of the overall plant while decreasing the cost and the environmental impact of the generated product. For the plant with CLC, a high increase in the cost of electricity is observed, while at the same time the environmental impact decreases.  相似文献   

19.
In this study, a cycle designed for capturing the greenhouse gas CO2 in a natural gas combined cycle power plant has been analyzed. The process is a pre-combustion CO2 capture cycle utilizing reforming of natural gas and removal of the carbon in the fuel prior to combustion in the gas turbine. The power cycle consists of a H2-fired gas turbine and a triple pressure steam cycle. Nitrogen is used as fuel diluent and steam is injected into the flame for additional NOx control. The heat recovery steam generator includes pre-heating for the various process streams. The pre-combustion cycle consists of an air-blown auto-thermal reformer, water–gas shift reactors, an amine absorption system to separate out the CO2, as well as a CO2 compression block. Included in the thermodynamic analysis are design calculations, as well as steady-state off-design calculations. Even though the aim is to operate a plant, as the one in this study, at full load there is also a need to be able to operate at part load, meaning off-design analysis is important. A reference case which excludes the pre-combustion cycle and only consists of the power cycle without CO2 capture was analyzed at both design and off-design conditions for comparison. A high degree of process integration is present in the cycle studied. This can be advantageous from an efficiency stand-point but the complexity of the plant increases. The part load calculations is one way of investigating how flexible the plant is to off-design conditions. In the analysis performed, part load behavior is rather good with efficiency reductions from base load operation comparable to the reference combined cycle plant.  相似文献   

20.
Chemical-looping combustion (CLC) has been suggested as an energy efficient method for the capture of carbon dioxide from combustion. Thermodynamics and kinetics of CaSO4 reduction with coal via gasification intermediate in a CLC process were discussed in the paper, with respect to the CO2 generating efficiency, the environmental factor and the surface morphology of oxygen carrier. Tests on the combined process of coal gasification and CaSO4 reduction with coal syngas were conducted in a batch fluidized bed reactor at different reaction temperatures and with different gasification intermediates. The products were characterized by gas chromatograph, gas analyzers and scanning electron microscope. And the results showed that an increase in the reaction temperature aggravated the SO2 emission. The CO2 generating efficiency also increased with the temperature, but it decreased when the temperature exceeded 950 °C due to the sintering of oxygen carrier particles. The use of CO2 as gasification intermediate in the fuel reactor had a positive effect on the sintering-resistant of oxygen carrier particles. However, increasing the steam/CO2 ratio in gasification intermediate evidently enhanced CO2 generating efficiency and reduced SO2 environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号