首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions.  相似文献   

2.
Carbon capture and storage (CCS) may play a central role in managing carbon emissions from the power sector and industry, but public support for the technology is unclear. To address this knowledge gap, and to test the use of discrete choice analysis for determining public attitudes, two focus groups and a national survey were conducted in Canada to investigate the public's perceptions of the benefits and risks of CCS, the likely determinants of public opinion, and overall support for the use of CCS.The results showed slight support for CCS development in Canada, and a belief that CCS is less risky than normal oil and gas industry operations, nuclear power, or coal-burning power plants. A majority of respondents indicate that they would support the use of CCS as part of a greenhouse gas reduction strategy, although it would likely have to be used in combination with energy efficiency and alternative energy technologies in order to retain public support.  相似文献   

3.
Water Challenges for Geologic Carbon Capture and Sequestration   总被引:2,自引:0,他引:2  
Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use.  相似文献   

4.
Biomass energy and carbon capture and storage (BECCS) can lead to a net removal of atmospheric CO2. This paper investigates environmental and economic performances of CCS retrofit applied to two mid-sized refineries producing ethanol from sugar beets. Located in the Region Centre France, each refinery has two major CO2 sources: fermentation and cogeneration units. “carbon and energy footprint” (CEF) and “discounted cash flow” (DCF) analyses show that such a project could be a good opportunity for CCS early deployment. CCS retrofit on fermentation only with natural gas fired cogeneration improves CEF of ethanol production and consumption by 60% without increasing much the non renewable energy consumption. CCS retrofit on fermentation and natural gas fired cogeneration is even more appealing by decreasing of 115% CO2 emissions, while increasing non renewable energy consumption by 40%. DCF shows that significant project rates of return can be achieved for such small sources if both a stringent carbon policy and direct subsidies corresponding to 25% of necessary investment are assumed. We also underlined that transport and storage cost dilution can be realistically achieved by clustering emissions from various plants located in the same area. On a single plant basis, increasing ethanol production can also produce strong economies of scale.  相似文献   

5.
Global warming is a result of increasing anthropogenic CO2 emissions, and the consequences will be dramatic climate changes if no action is taken. One of the main global challenges in the years to come is therefore to reduce the CO2 emissions.Increasing energy efficiency and a transition to renewable energy as the major energy source can reduce CO2 emissions, but such measures can only lead to significant emission reductions in the long-term. Carbon capture and storage (CCS) is a promising technological option for reducing CO2 emissions on a shorter time scale.A model to calculate the CO2 capture potential has been developed, and it is estimated that 25 billion tonnes CO2 can be captured and stored within the EU by 2050. Globally, 236 billion tonnes CO2 can be captured and stored by 2050. The calculations indicate that wide implementation of CCS can reduce CO2 emissions by 54% in the EU and 33% globally in 2050 compared to emission levels today.Such a reduction in emissions is not sufficient to stabilize the climate. Therefore, the strategy to achieve the necessary CO2 emissions reductions must be a combination of (1) increasing energy efficiency, (2) switching from fossil fuel to renewable energy sources, and (3) wide implementation of CCS.  相似文献   

6.
Over the next two decades, our nation will need to add a substantial amount of new power generation capacity. The possibility of more stringent environmental regulations for greenhouse gas emissions in the utility sector has provided a window of opportunity for integrated gasification combined cycles (IGCCs) equipped with carbon capture and sequestration (CCS) to participate significantly in this expansion. This paper analyzes several advanced technologies under development in the Department of Energy (DOE) research and development (R&D) portfolio that have the potential to improve process efficiency, reduce capital and operating expense, and increase plant availability resulting in a significant reduction in the cost of electricity for plants that capture carbon.  相似文献   

7.
This paper reports on European public perceptions of carbon capture and storage (CCS) as determined through six focus groups, one held in each of the UK, the Netherlands, Poland, Germany, Belgium and Spain. The development of opinion and the emergence of concerns were observed via phased exposure to a specially commissioned film providing an overview of CCS technology, its rationale and associated debates, supplemented by additional information on national energy mixes. In general there was a high level of commonality in opinion and concerns across the six countries, with only minor differences. The concerns that emerged were not allayed by the information provided. On the contrary, there was evidence of a shift from initial uncertainty about CCS to negative positions. CCS was generally perceived as an uncertain, end-of-pipe technology that will perpetuate fossil-fuel dependence. Noting the political context to CCS, we conclude that advocates will likely find the European public opinion context a challenging one in which to achieve deployment, particularly for onshore storage, except where local communities perceive real economic or other benefits to CCS.  相似文献   

8.
In the not too distant future several power plants throughout Europe will have to be replaced and the decision has to be made whether to build coal-fired power plants with carbon capture and storage (CCS). In a study for the city of Kiel in northern Germany only an 800 MW coal power plant reaches a required minimum for rentability. This study looks at an additional economic and environmental evaluation of a coal plant with CCS. We find that in two out of three carbon and energy price scenarios integrated gasification combined cycle (IGCC) plants with CCS have the greatest rentability. Pulverised coal (PC) plants with CCS can only compete with other options under very favourable assumptions. Life-cycle emissions from CCS are less than 70% of a coal plant – compared with at least more than 80% when only considering direct emissions from plants. However, life-cycle emissions are lower than in any other assessed option.  相似文献   

9.
Carbon dioxide capture and storage (CCS) involves the capture of CO2 at a large industrial facility, such as a power plant, and its transport to a geological (or other) storage site where CO2 is sequestered. Previous work has identified pipeline transport of liquid CO2 as the most economical method of transport for large volumes of CO2. However, there is little published work on the economics of CO2 pipeline transport. The objective of this paper is to estimate total cost and the cost per tonne of transporting varying amounts of CO2 over a range of distances for different regions of the continental United States. An engineering-economic model of pipeline CO2 transport is developed for this purpose. The model incorporates a probabilistic analysis capability that can be used to quantify the sensitivity of transport cost to variability and uncertainty in the model input parameters. The results of a case study show a pipeline cost of US$ 1.16 per tonne of CO2 transported for a 100 km pipeline constructed in the Midwest handling 5 million tonnes of CO2 per year (the approximate output of an 800 MW coal-fired power plant with carbon capture). For the same set of assumptions, the cost of transport is US$ 0.39 per tonne lower in the Central US and US$ 0.20 per tonne higher in the Northeast US. Costs are sensitive to the design capacity of the pipeline and the pipeline length. For example, decreasing the design capacity of the Midwest US pipeline to 2 million tonnes per year increases the cost to US$ 2.23 per tonne of CO2 for a 100 km pipeline, and US$ 4.06 per tonne CO2 for a 200 km pipeline. An illustrative probabilistic analysis assigns uncertainty distributions to the pipeline capacity factor, pipeline inlet pressure, capital recovery factor, annual O&M cost, and escalation factors for capital cost components. The result indicates a 90% probability that the cost per tonne of CO2 is between US$ 1.03 and US$ 2.63 per tonne of CO2 transported in the Midwest US. In this case, the transport cost is shown to be most sensitive to the pipeline capacity factor and the capital recovery factor. The analytical model elaborated in this paper can be used to estimate pipeline costs for a broad range of potential CCS projects. It can also be used in conjunction with models producing more detailed estimates for specific projects, which requires substantially more information on site-specific factors affecting pipeline routing.  相似文献   

10.
Carbon capture and storage (CCS) technology has been endorsed by the IPCC and the UK government as a key mitigation option but remains on the cusp of wide-scale commercial deployment. Here we present a technology roadmap for CCS, depicted in terms of external factors and short- and long-term pathways for its development, moving from a demonstration to commercialisation era. The roadmap was been developed through a two-phase process of stakeholder engagement; the second phase of this, a high level stakeholder workshop, is documented here. This approach has provided a unique overview of the current status, potential and barriers to CCS deployment in the UK. In addition to the roadmap graphics and more detailed review, five consensus conclusions emerging from the workshop are presented. These describe the need for a monetary CO2 value and the financing of carbon capture and storage schemes; the lack of technical barriers to the deployment of demonstration scale CCS plant; the role of demonstration projects in developing a robust regulatory framework; key storage issues; the need for a long-term vision in furthering both the technical and non-technical development of CCS.  相似文献   

11.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

12.
A survey on the public perception of CCS in France   总被引:2,自引:0,他引:2  
An awareness and opinion survey on carbon capture and storage (CCS) was conducted on a representative sample of French residents aged 15 years and above. About 6% of respondents were able to provide a satisfactory definition of the technology. The key question about ‘approval of or opposition to’ the use of CCS in France was asked twice, first after presenting the technology, then after explaining its potential adverse consequences. The approval rates, which were 59% and 38%, respectively, show that there is no a priori rejection of the technology. The sample was split in two to test for a semantic effect: half of the questionnaires used “Stockage” (English: storage), the other half “Sequestration”. Manipulating the vocabulary had no statistically significant effect on approval rates. Stockage is more meaningful, but does not convey the idea of permanent monitoring.  相似文献   

13.
The extent of social acceptance of carbon capture and storage (CCS) is likely to significantly influence the sustainable development of CO2 storage projects. Acceptance of CCS by the key stakeholders (policy makers, the general public, the media and the local community), linked to specific projects, as well as how the technology is communicated about and perceived by the public, have become matters of interest for the social sciences. This article reports on an investigation of the public perception of CCS technology in Spain. Individuals’ views on CCS are analysed through focus groups with lay citizens using “stimulus materials”. As the analysis shows, lay views of CCS differ significantly from the views of decision-makers and experts. Public concerns and reactions to CCS technology and potential projects, as well as the degree of consensus on its acceptance or rejection are detailed. Implications for the future use of CCS are discussed.  相似文献   

14.
One of the most important sources of CO2 emissions are the fossil-fuel fired plants for production of electricity. Removal of CO2 from flue gas streams for further sequestration has been proposed by the International Panel on Climate Change experts as one of the most reliable solutions to mitigate anthropogenic greenhouse emissions. When natural gas is employed as fuel, the molar fraction of CO2 in the flue gas is lower than 5% causing serious problems for capture. The purpose of this work is to present experimental validation of an Electric Swing Adsorption (ESA) technology that may be employed for carbon capture for low molar fractions of CO2 in the flue gas streams. To improve energy utilization, an activated carbon honeycomb monolith with low electrical resistivity was employed as selective adsorbent. A mathematical model for this honeycomb is proposed as well as different ESA cycles for CO2 capture.  相似文献   

15.
This paper presents the results from a survey on experts’ attitudes towards the development of CCS technologies in Spain. This is the first study carried out in Spain intending to report an empirical analysis of stakeholder perceptions on the risks, challenges and barriers facing CCS deployment. Results show a positive attitude towards CCS implementation in Spain. Experts are concerned about the suitability of storage sites, safety and capture costs. They tend to support CCS as a bridging solution to climate change, and have a general low level of perceived risk from CCS. Experts’ risk perception is influenced, to some extent, by general values and beliefs as well as by sociodemographics and, to a lesser extent, by group membership.  相似文献   

16.
The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.  相似文献   

17.
This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the GHG emissions of electric vehicles (EVs) powered with coal-to-electricity in China. A life cycle model is used to account for full fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. It is found that the reduction of life cycle GHG emissions of EVs charged by electricity generated from coal, without utilizing carbon dioxide capture and storage (CCS) technology can be 3–36% when compared to petroleum-based gasoline car. The large range in emissions reduction potential is driven by the many different power generation technologies that are and could in the future be used to generate electricity in China. When CCS is employed in power plants, the GHG emission reductions increase to 60–70% compared to petroleum-based gasoline car. However, the use of coal to produce liquid transportation fuels (CTL fuels) will likely lead to significantly increased life cycle GHG emissions, potentially 30–140% higher than petroleum-based gasoline. When CCS is utilized in the CTL plant, the CTL fueled vehicles emit roughly equal GHG emissions to petroleum-based gasoline vehicles from the life cycle perspective. The authors conclude that policies are therefore needed in China in order to accelerate battery technology and infrastructural improvements for EV charging, increased energy efficiency management, and deployment of low-carbon technologies such as CCS.  相似文献   

18.
The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snøhvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible. Monitoring and verification technologies have been tested and demonstrated to detect and track the CO2 plume in different subsurface geological environments. By the end of 2008, approximately 20 Mt of CO2 had been successfully injected into saline aquifers by existing operations. Currently, the highest injection rate and total storage volume for a single storage operation are approximately 1 Mt CO2/year and 25 Mt, respectively. If carbon capture and storage (CCS) is to be an effective option for decreasing greenhouse gas emissions, commercial-scale storage operations will require orders of magnitude larger storage capacity than accessed by the existing sites. As a result, new demonstration projects will need to develop and test injection strategies that consider multiple injection wells and the optimisation of the usage of storage space. To accelerate large-scale CCS deployment, demonstration projects should be selected that can be readily employed for commercial use; i.e. projects that fully integrate the capture, transport and storage processes at an industrial emissions source.  相似文献   

19.
Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting global climate policy targets by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120–160 EJ/year of biomass energy is produced globally by midcentury and 200–250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass-based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions – especially the availability of carbon dioxide capture and storage (CCS) technologies – affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above $150/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer–Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.  相似文献   

20.
The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84–154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and control moisture sensitivity in longer run.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号