首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Private domestic gardens contribute substantially to the biodiversity of urban areas and benefit human health and well-being. We previously reported a study of 267 gardens across five cities in the United Kingdom in which variation in geographical and climatic factors had little bearing on the richness, diversity and composition of plant species. We therefore hypothesise that garden management is an important factor in determining garden characteristics. Here, from the same sample of gardens, we investigate potential associations between the uses to which people put their gardens, the types of management activities they undertake, and the characteristics of those gardens. Householders (n = 265) completed a questionnaire detailing various aspects of garden use and management activities. The majority of respondents used their gardens chiefly for relaxation, recreation, and eating. Fewer than one fifth included “gardening” amongst their garden uses even though all performed some garden management, suggesting that not all management activity resulted from an interest in gardening. Garden-watering and lawn-mowing were the most prevalent activities and were predictors of other types of management including weeding, vegetation-cutting, leaf-collection, and dead-heading flowers. A number of these activities were associated with one another, the richness and composition of plant species, and the number of land uses in gardens. However, relationships between management activities and the amount of tall vegetation were less consistent, and garden management appeared to be independent of garden area. More species of amphibians, birds, and mammals were observed in gardens with ponds and in which efforts were made to attract wildlife, particularly by providing drinking water. This study supports the hypothesis that garden use and management is associated with garden characteristics.  相似文献   

2.
Green infrastructure (GI) is quickly gaining ground as a less costly, greener alternative to traditional methods of stormwater management. One popular form of GI is the use of rain gardens to capture and treat stormwater. We used life cycle assessment (LCA) to compare environmental impacts of residential rain gardens constructed in the Shepherd's Creek watershed of Cincinnati, Ohio to those from a typical detain and treat system. LCA is an internationally standardized framework for analyzing the potential environmental performance of a product or service by including all stages in its life cycle, including material extraction, manufacturing, use, and disposal. Complementary to the life cycle environmental impact assessment, the life cycle costing approach was adopted to compare the equivalent annual costs of each of these systems. These analyses were supplemented by modeling alternative scenarios to capture the variability in implementing a GI strategy. Our LCA models suggest rain garden costs and impacts are determined by labor requirement; the traditional alternative's impacts are determined largely by the efficiency of wastewater treatment, while costs are determined by the expense of tunnel construction. Gardens were found to be the favorable option, both financially (~42% cost reduction) and environmentally (62‐98% impact reduction). Wastewater utilities may find significant life cycle cost and environmental impact reductions in implementing a rain garden plan.  相似文献   

3.
Woltemade, Christopher J., 2010. Impact of Residential Soil Disturbance on Infiltration Rate and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 46(4): 700-711. DOI: 10.1111/j.1752-1688.2010.00442.x Abstract: Soil disturbances such as excavation and compaction in residential developments affect lawn infiltration rates and stormwater runoff. These effects were investigated via measuring saturated infiltration rates at 108 residential sites and 18 agricultural sites near Shippensburg, south-central Pennsylvania, using a double-ring infiltrometer. Residential sites included four neighborhoods distributed across three soil series classified as hydrologic soil group (HSG) B. Additional parcel data included date of house construction, percentage impervious area, lawn condition, and woody vegetation condition. Measured infiltration rates ranged from 0 to >40 cm/hour. Analysis of variance indicated significantly different mean infiltration rates (p < 0.001) for lots constructed pre-2000 (9.0 cm/hour) and those constructed post-2000 (2.8 cm/hour). Test results were used to determine a “field-tested” HSG for each site, representing disturbed soil conditions. Stormwater runoff was estimated from residential lots for a range of 24-hour design storms using the TR-55 model and several alternative methods of determining curve numbers, including five different representations of soil conditions. Curve numbers and stormwater runoff were substantially higher when based on field-tested HSGs for lots constructed post-2000 compared with lots built pre-2000 and when based on the HSG for undisturbed soils, documenting the magnitude of possible error in stormwater runoff models that neglect soil disturbance.  相似文献   

4.
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.  相似文献   

5.
Urban Domestic Gardens (XIV): The Characteristics of Gardens in Five Cities   总被引:1,自引:0,他引:1  
Domestic gardens make substantial contributions to the provision of green space in urban areas. However, the ecological functions provided by such gardens depend critically on their configuration and composition. Here, we present the first detailed analysis of variation in the composition of urban gardens, in relation to housing characteristics and the nature of the surrounding landscape, across different cities in the United Kingdom. In all five cities studied (Belfast, Cardiff, Edinburgh, Leicester, and Oxford), garden size had an overwhelming influence on garden composition. Larger gardens supported more of the land-use types recorded, in greater extents, and were more likely to contain particular features, including tall trees and mature shrubs, areas of unmown grass and uncultivated land, vegetable patches, ponds, and composting sites. The proportional contribution of non-vegetated land-uses decreased as garden area increased. House age was less significant in determining the land-use within gardens, although older houses, which were more likely to be found further from the urban edge of the city, contained fewer hedges and greater areas of vegetation canopy >2 m in height. Current UK government planning recommendations will ultimately reduce the area of individual gardens and are thus predicted to result in fewer tall trees and, in particular, less vegetation canopy >2 m. This might be detrimental from ecological, aesthetic, social, and economic stand points.  相似文献   

6.
Rain gardens, also known as bioretention cells, are low‐impact developments designed to mitigate several problems associated with urban stormwater. This four‐month field study involved a rain garden at a wastewater treatment plant in north‐central Texas in the United States of America. Partially treated wastewater from an anaerobic digester spilled into the rain garden at the beginning of the study. Subsequently, inflow and outflow concentrations of nitrogen and phosphorus were measured for nine simulated floods, preceded by dry‐spell intervals of 5, 8, or 12 days. Despite large inputs from the wastewater spill, the rain garden gradually processed and flushed the nitrogen. Longer dry spells tended to produce relatively higher outflow nitrate concentrations. A large pool of phosphorus in the soil restricted the rain garden's ability to reduce outflow orthophosphate concentrations, which were stable and lower than inflow concentrations throughout the study; however, adsorptive processes attenuated a relatively high inflow concentration by the end of the study.  相似文献   

7.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

8.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   

9.
Increasing water for onsite and offsite uses can be a viable objective for management of certain western rangelands. One approach utilizes water harvesting techniques to increase surface runoff by preventing or slowing infiltration of rain. An attractive alternative, where applicable, is to replace vegetation that uses much water with plants that use less so that more water percolates through the soil to streams and ground water. Most sites are too dry to increase water yield in this way; probably less than 1 percent of the western rangelands can be managed for this purpose. However, where annual precipitation exceeds about 450 mm (18 inches) and deep-rooted shrubs can be replaced by shallow-rooted grasses, there is potential to increase streamflows and to improve forage for livestock. Little or no increase can be expected by eradication of low-density brush and pinyon-juniper woodlands. Potentials for improving water yield are reviewed and summarized by vegetation types.  相似文献   

10.
Rainfall interception represents the amount of water trapped in natural cover that is not drained directly to the ground. Intercepted rainfall may evaporate after a rain event, making it one of the main drivers of water balance and hydrologic regionalization. This process can be affected by factors such as climate, altitude, vegetation type, and topography. Here is a simple method of calculating rainfall interception in temperate forests using in Santa Maria Yavesia, Oaxaca, and Mexico as an illustrative study area. We used two rain gauges to measure net precipitation (Np) under the canopy at each study site and one gauge outside the canopy to obtain gross precipitation (Gp). Throughfall (Th) was indirectly measured using hemispherical photographs. Rainfall interception was obtained through a combination Th and Gp and Np. The mean rainfall interception was 50.6% in the Abies forests, 23%–40% in the coniferous‐mixed forests, and 27.4% in the broad‐leaved forests. We classified rainfall events by intensity to determine the effect of canopy structure and precipitation and found that 75% of the events were weak events, 24% were moderate events, and 1% were strong events. In addition, we found that rainfall interception was lower when the intensity of precipitation was higher. Our method can be replicated in different ecosystems worldwide as a tool for assessing the influence of rainfall interception in terms of ecological services.  相似文献   

11.
While claims about the environmental benefits of community gardens abound, few researchers have systematically assessed the ecological integrity of gardening practices. This study investigated gardening practices in 50 community gardens in Brisbane and Gold Coast cities, Australia. The study aimed to better understand how gardening practices might affect the ecological viability of community gardens. Factors investigated included: garden bio-physical characteristics, operators’ motivations, gardeners’ socio-demographic backgrounds, garden facilities and types of plants grown. Two broad types of gardens were identified: permaculture (21 gardens) and non-permaculture (29 gardens). Permaculture gardens used lower-impact gardening practices. Findings have policy implications for environmental planning and management.  相似文献   

12.
Backyard garden sharing projects can be viewed as a small-scale alternative to traditional community gardens. These shared spaces are able to overcome some of the pressures on community gardens such as competing demands for housing and other services and amenities while still providing many of the health-promoting benefits community gardens are noted for. This study is a small-scale participatory qualitative project that explores three backyard garden sharing partnerships. The aim of this study is to explore the benefits and challenges of these shared spaces and to discuss the overall feasibility of shared backyard gardens. Partnerships comprised an older adult homeowner (i.e., greater than age 65) and a non-senior gardener. At an individual level, the results suggest that backyard garden sharing can promote physical activity, psychosocial well-being, and social connectedness for both older adult homeowners and volunteer garden partners. To be successful, partners benefit from an established agreement about what to grow and how to share the garden's produce. In addition, a dedicated project coordinator and a limited amount of community resources can ensure the viability of these small-scale projects.  相似文献   

13.
Urban gardens are important sources of sustenance for communities with limited access to food. Hence, this study focuses on food production in gardens in the Toledo metropolitan area in Northwest Ohio. We administered surveys to 150 garden managers from November 2014 to February 2015 in our attempt to better understand how neighbourhood racial composition and poverty levels are related to staffing and voluntarism, food production and distribution, the development of infrastructure, and the adoption of sustainability practices in urban gardens. The results from 30 gardens are presented in this paper. We used Geographic Information Systems to map the gardens and overlay the map with 2010 census data so that we could conduct demographic analyses of the neighbourhoods in which the gardens were located. Though the gardens were small – two acres or less – up to 46 varieties of food were grown in a single garden. Gardens also operated on small budgets. Food from the gardens was gifted or shared with friends, family, and neighbourhood residents. Gardens in predominantly minority neighbourhoods tended to have fewer institutional partners, less garden infrastructure, and had adopted fewer sustainable practices than gardens in predominantly White neighbourhoods. Nonetheless, residents of predominantly minority and high-poverty neighbourhoods participated in garden activities and influenced garden operations. Volunteering and staffing were racialised and gendered.  相似文献   

14.
ABSTRACT: A review of literature pertaining to the relative rates of evaporation from vegetation covered and open water bodies is presented. The review indicates that the only reliable experiments capable of correctly addressing this question are those conducted in situ. Experiments of this nature show the ratio of vegetation covered (swamp) evaporation to open water evaporation to generally be less than unity over extensive surfaces and to only approach unity for vegetation that is young and vigorous. Recent experimental evidence presented within a theoretical context, however, indicates that even in the latter situation the ratio may never reach unity. Consequently, over large lakes and reservoirs, the presence of vegetation may actually be a water conservation mechanism, with the eradication of the vegetation leading to significantly increased evaporative water losses.  相似文献   

15.
Gardening has become a relevant contributor to the quality of life of suburbanites, as a source of leisure, to build a relationship with nature or to express a particular social identity. Nevertheless, water scarcity in the Mediterranean region has increased concerns about how demand should be managed to face future uncertainties, and watering the gardens has become an element for discussion in urban planning. This contribution presents the findings of a survey of permanent residents and secondary homeowners (n?=?230) in the suburban areas surrounding the city of Girona in the northeast of Catalonia (Spain). The area is a popular national and international tourist destination and a preferred place for second-home owners. We explore the main socio-demographic drivers for choosing an alternative watering source and we analyse if water-harvesting tank sizes properly meet net irrigation requirements. Results show that many water-harvesting tanks are oversized. The percentage of unemployed or retired household members, the estimated irrigation water needs of the garden and the education level directly influence the search for alternative sources of water. Moreover, social variables like interest in gardening, water conservation attitudes and household income indirectly influence the search for alternative sources of water.  相似文献   

16.
Straight, trapezoidal‐shaped surface drainage channels efficiently drain the soil profile, but their deviations from natural fluvial conditions drive the need for frequent maintenance. Ecological and socioeconomic impacts of drainage ditch maintenance activities can be significant, leading to harmful algal blooms and increased sedimentation. We developed a two‐stage ditch design that is more consistent with fluvial form and process. The approach has potential to enhance ecological services while meeting drainage needs essential for agricultural production. We studied geomorphic change of the inset channel, benches and banks of seven two‐stage ditches in Ohio, Indiana, and Michigan. Three to 10 years after construction, inset channel changes reflected natural adjustments, but not all ditches had reached their quasi‐equilibrium state. Ditches had experienced both degradation and aggradation on the benches at a rate of 0.5‐13 mm/yr. Aggradation on the benches was not likely to threaten tile drain outlets. Localized scour was observed on the banks at some sites, but at all but one site changes were not statistically significant. Except for the removal of woody vegetation, none of the ditches required routine maintenance since construction. Two‐stage ditches can be a stable, viable option for drainage ditch management if designed and installed properly on the landscape.  相似文献   

17.
The all-season vegetable known as waterleaf (Talinum triangulare) is extensively grown in Nigeria's metropolistan market gardens. This paper examines the soil compositions of some of the cultivation areas for this crop to determine the impacts of its very intensive repetitive cultivation. In general, the regular application of organic manures and mineral fertilizers has maintained the fertility status of the market garden soils. Multiple regression analysis indicated that base saturation, available phosphorus and organic matter were the most significant determinants to variations in crop production.  相似文献   

18.
ABSTRACT: A drain function and set of type curves were defined for the mathematical solution that represents one-dimensional flow under nonsteady conditions in a leaky aquifer for the constant drawdown boundary condition. A match point procedure was developed for determining the aquifer parameters transmissivity, storage coefficient, and leakance based on the drain function and type curves. Use of the procedure is illustrated by an example that utilizes simulated aquifer drawdowns and flowrate data. The drain function and type curves developed in this investigation include the effects of leakage for the constant drawdown boundary condition, which is not included in the existing drain function and type curve found in the literature. Thus, a new set of type curves was developed that can be used to analyze drawdowns for one-dimensional flow in a leaky aquifer with constant drawdown at a line sink. Applications would include flow to a canal or river, drainage of agricultural lands, and dewatering associated with strip mining operations.  相似文献   

19.
ABSTRACT: The implementation of various bioretention systems was analyzed, including rain gardens, vegetated swales, trenches, and infiltration basins in the St. Francis subdivision, Cross Plains, Wisconsin. Through the examination of archival data and interviews with key participants, it was found that although regulatory and political pressures encouraged the inclusion of bioretention, current standards for storm water management prevailed. The developers had to meet both existing requirements and anticipated rules requiring infiltration. As a result, bioretention systems simply supplemented, rather than replaced, traditional storm water practices. The confusion surrounding dual standards contributed to substantial delays in the negotiations among relevant stakeholders in the watershed. It is concluded that the St. Francis subdivision serves as both a cautionary tale and a bioretention success story. As a caution, this situation demonstrates the need for careful review and refinement of existing storm water ordinances to incorporate water quality improvement technologies, such as bioretention. The demonstrated success of the St. Francis development, however, is that it became a positive prototype for best management storm water practices elsewhere in the region. In addition, the water quality monitoring data from the site has contributed to development of a new county ordinance, the first in Wisconsin to address both quantity and quality of storm water runoff.  相似文献   

20.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号